@inproceedings{ehsani-etal-2019-clinical,
title = "Clinical Data Classification using Conditional Random Fields and Neural Parsing for Morphologically Rich Languages",
author = "Ehsani, Razieh and
Niemi, Tyko and
Khullar, Gaurav and
Leivo, Tiina",
editor = "Rumshisky, Anna and
Roberts, Kirk and
Bethard, Steven and
Naumann, Tristan",
booktitle = "Proceedings of the 2nd Clinical Natural Language Processing Workshop",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-1919/",
doi = "10.18653/v1/W19-1919",
pages = "149--155",
abstract = "Past prescriptions constitute a central element in patient records. These are often written in an unstructured and brief form. Extracting information from such prescriptions enables the development of automated processes in the medical data mining field. This paper presents a Conditional Random Fields (CRFs) based approach to extract relevant information from prescriptions. We focus on Finnish language prescriptions and make use of Finnish language specific features. Our labeling accuracy is 95{\%}, which compares favorably to the current state-of-the-art in English language prescriptions. This, to the best of our knowledge, is the first such work for the Finnish language."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ehsani-etal-2019-clinical">
<titleInfo>
<title>Clinical Data Classification using Conditional Random Fields and Neural Parsing for Morphologically Rich Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Razieh</namePart>
<namePart type="family">Ehsani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tyko</namePart>
<namePart type="family">Niemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaurav</namePart>
<namePart type="family">Khullar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiina</namePart>
<namePart type="family">Leivo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Past prescriptions constitute a central element in patient records. These are often written in an unstructured and brief form. Extracting information from such prescriptions enables the development of automated processes in the medical data mining field. This paper presents a Conditional Random Fields (CRFs) based approach to extract relevant information from prescriptions. We focus on Finnish language prescriptions and make use of Finnish language specific features. Our labeling accuracy is 95%, which compares favorably to the current state-of-the-art in English language prescriptions. This, to the best of our knowledge, is the first such work for the Finnish language.</abstract>
<identifier type="citekey">ehsani-etal-2019-clinical</identifier>
<identifier type="doi">10.18653/v1/W19-1919</identifier>
<location>
<url>https://aclanthology.org/W19-1919/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>149</start>
<end>155</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Clinical Data Classification using Conditional Random Fields and Neural Parsing for Morphologically Rich Languages
%A Ehsani, Razieh
%A Niemi, Tyko
%A Khullar, Gaurav
%A Leivo, Tiina
%Y Rumshisky, Anna
%Y Roberts, Kirk
%Y Bethard, Steven
%Y Naumann, Tristan
%S Proceedings of the 2nd Clinical Natural Language Processing Workshop
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F ehsani-etal-2019-clinical
%X Past prescriptions constitute a central element in patient records. These are often written in an unstructured and brief form. Extracting information from such prescriptions enables the development of automated processes in the medical data mining field. This paper presents a Conditional Random Fields (CRFs) based approach to extract relevant information from prescriptions. We focus on Finnish language prescriptions and make use of Finnish language specific features. Our labeling accuracy is 95%, which compares favorably to the current state-of-the-art in English language prescriptions. This, to the best of our knowledge, is the first such work for the Finnish language.
%R 10.18653/v1/W19-1919
%U https://aclanthology.org/W19-1919/
%U https://doi.org/10.18653/v1/W19-1919
%P 149-155
Markdown (Informal)
[Clinical Data Classification using Conditional Random Fields and Neural Parsing for Morphologically Rich Languages](https://aclanthology.org/W19-1919/) (Ehsani et al., ClinicalNLP 2019)
ACL