@inproceedings{schwarzenberg-etal-2019-neural,
title = "Neural Vector Conceptualization for Word Vector Space Interpretation",
author = "Schwarzenberg, Robert and
Raithel, Lisa and
Harbecke, David",
editor = "Rogers, Anna and
Drozd, Aleksandr and
Rumshisky, Anna and
Goldberg, Yoav",
booktitle = "Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for {NLP}",
month = jun,
year = "2019",
address = "Minneapolis, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2001/",
doi = "10.18653/v1/W19-2001",
pages = "1--7",
abstract = "Distributed word vector spaces are considered hard to interpret which hinders the understanding of natural language processing (NLP) models. In this work, we introduce a new method to interpret arbitrary samples from a word vector space. To this end, we train a neural model to conceptualize word vectors, which means that it activates higher order concepts it recognizes in a given vector. Contrary to prior approaches, our model operates in the original vector space and is capable of learning non-linear relations between word vectors and concepts. Furthermore, we show that it produces considerably less entropic concept activation profiles than the popular cosine similarity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schwarzenberg-etal-2019-neural">
<titleInfo>
<title>Neural Vector Conceptualization for Word Vector Space Interpretation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Schwarzenberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Raithel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Harbecke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Distributed word vector spaces are considered hard to interpret which hinders the understanding of natural language processing (NLP) models. In this work, we introduce a new method to interpret arbitrary samples from a word vector space. To this end, we train a neural model to conceptualize word vectors, which means that it activates higher order concepts it recognizes in a given vector. Contrary to prior approaches, our model operates in the original vector space and is capable of learning non-linear relations between word vectors and concepts. Furthermore, we show that it produces considerably less entropic concept activation profiles than the popular cosine similarity.</abstract>
<identifier type="citekey">schwarzenberg-etal-2019-neural</identifier>
<identifier type="doi">10.18653/v1/W19-2001</identifier>
<location>
<url>https://aclanthology.org/W19-2001/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Vector Conceptualization for Word Vector Space Interpretation
%A Schwarzenberg, Robert
%A Raithel, Lisa
%A Harbecke, David
%Y Rogers, Anna
%Y Drozd, Aleksandr
%Y Rumshisky, Anna
%Y Goldberg, Yoav
%S Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, USA
%F schwarzenberg-etal-2019-neural
%X Distributed word vector spaces are considered hard to interpret which hinders the understanding of natural language processing (NLP) models. In this work, we introduce a new method to interpret arbitrary samples from a word vector space. To this end, we train a neural model to conceptualize word vectors, which means that it activates higher order concepts it recognizes in a given vector. Contrary to prior approaches, our model operates in the original vector space and is capable of learning non-linear relations between word vectors and concepts. Furthermore, we show that it produces considerably less entropic concept activation profiles than the popular cosine similarity.
%R 10.18653/v1/W19-2001
%U https://aclanthology.org/W19-2001/
%U https://doi.org/10.18653/v1/W19-2001
%P 1-7
Markdown (Informal)
[Neural Vector Conceptualization for Word Vector Space Interpretation](https://aclanthology.org/W19-2001/) (Schwarzenberg et al., RepEval 2019)
ACL