@inproceedings{noriega-atala-etal-2019-understanding,
title = "Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods",
author = "Noriega-Atala, Enrique and
Liang, Zhengzhong and
Bachman, John and
Morrison, Clayton and
Surdeanu, Mihai",
editor = "Nastase, Vivi and
Roth, Benjamin and
Dietz, Laura and
McCallum, Andrew",
booktitle = "Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2603/",
doi = "10.18653/v1/W19-2603",
pages = "21--30",
abstract = "An important task in the machine reading of biochemical events expressed in biomedical texts is correctly reading the polarity, i.e., attributing whether the biochemical event is a promotion or an inhibition. Here we present a novel dataset for studying polarity attribution accuracy. We use this dataset to train and evaluate several deep learning models for polarity identification, and compare these to a linguistically-informed model. The best performing deep learning architecture achieves 0.968 average F1 performance in a five-fold cross-validation study, a considerable improvement over the linguistically informed model average F1 of 0.862."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="noriega-atala-etal-2019-understanding">
<titleInfo>
<title>Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enrique</namePart>
<namePart type="family">Noriega-Atala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhengzhong</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Bachman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Clayton</namePart>
<namePart type="family">Morrison</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vivi</namePart>
<namePart type="family">Nastase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Dietz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">McCallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>An important task in the machine reading of biochemical events expressed in biomedical texts is correctly reading the polarity, i.e., attributing whether the biochemical event is a promotion or an inhibition. Here we present a novel dataset for studying polarity attribution accuracy. We use this dataset to train and evaluate several deep learning models for polarity identification, and compare these to a linguistically-informed model. The best performing deep learning architecture achieves 0.968 average F1 performance in a five-fold cross-validation study, a considerable improvement over the linguistically informed model average F1 of 0.862.</abstract>
<identifier type="citekey">noriega-atala-etal-2019-understanding</identifier>
<identifier type="doi">10.18653/v1/W19-2603</identifier>
<location>
<url>https://aclanthology.org/W19-2603/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>21</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods
%A Noriega-Atala, Enrique
%A Liang, Zhengzhong
%A Bachman, John
%A Morrison, Clayton
%A Surdeanu, Mihai
%Y Nastase, Vivi
%Y Roth, Benjamin
%Y Dietz, Laura
%Y McCallum, Andrew
%S Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F noriega-atala-etal-2019-understanding
%X An important task in the machine reading of biochemical events expressed in biomedical texts is correctly reading the polarity, i.e., attributing whether the biochemical event is a promotion or an inhibition. Here we present a novel dataset for studying polarity attribution accuracy. We use this dataset to train and evaluate several deep learning models for polarity identification, and compare these to a linguistically-informed model. The best performing deep learning architecture achieves 0.968 average F1 performance in a five-fold cross-validation study, a considerable improvement over the linguistically informed model average F1 of 0.862.
%R 10.18653/v1/W19-2603
%U https://aclanthology.org/W19-2603/
%U https://doi.org/10.18653/v1/W19-2603
%P 21-30
Markdown (Informal)
[Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods](https://aclanthology.org/W19-2603/) (Noriega-Atala et al., NAACL 2019)
ACL