@inproceedings{noriega-atala-etal-2019-understanding,
    title = "Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods",
    author = "Noriega-Atala, Enrique  and
      Liang, Zhengzhong  and
      Bachman, John  and
      Morrison, Clayton  and
      Surdeanu, Mihai",
    editor = "Nastase, Vivi  and
      Roth, Benjamin  and
      Dietz, Laura  and
      McCallum, Andrew",
    booktitle = "Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-2603/",
    doi = "10.18653/v1/W19-2603",
    pages = "21--30",
    abstract = "An important task in the machine reading of biochemical events expressed in biomedical texts is correctly reading the polarity, i.e., attributing whether the biochemical event is a promotion or an inhibition. Here we present a novel dataset for studying polarity attribution accuracy. We use this dataset to train and evaluate several deep learning models for polarity identification, and compare these to a linguistically-informed model. The best performing deep learning architecture achieves 0.968 average F1 performance in a five-fold cross-validation study, a considerable improvement over the linguistically informed model average F1 of 0.862."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="noriega-atala-etal-2019-understanding">
    <titleInfo>
        <title>Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Enrique</namePart>
        <namePart type="family">Noriega-Atala</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zhengzhong</namePart>
        <namePart type="family">Liang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">John</namePart>
        <namePart type="family">Bachman</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Clayton</namePart>
        <namePart type="family">Morrison</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mihai</namePart>
        <namePart type="family">Surdeanu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Vivi</namePart>
            <namePart type="family">Nastase</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Benjamin</namePart>
            <namePart type="family">Roth</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Laura</namePart>
            <namePart type="family">Dietz</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Andrew</namePart>
            <namePart type="family">McCallum</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>An important task in the machine reading of biochemical events expressed in biomedical texts is correctly reading the polarity, i.e., attributing whether the biochemical event is a promotion or an inhibition. Here we present a novel dataset for studying polarity attribution accuracy. We use this dataset to train and evaluate several deep learning models for polarity identification, and compare these to a linguistically-informed model. The best performing deep learning architecture achieves 0.968 average F1 performance in a five-fold cross-validation study, a considerable improvement over the linguistically informed model average F1 of 0.862.</abstract>
    <identifier type="citekey">noriega-atala-etal-2019-understanding</identifier>
    <identifier type="doi">10.18653/v1/W19-2603</identifier>
    <location>
        <url>https://aclanthology.org/W19-2603/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>21</start>
            <end>30</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods
%A Noriega-Atala, Enrique
%A Liang, Zhengzhong
%A Bachman, John
%A Morrison, Clayton
%A Surdeanu, Mihai
%Y Nastase, Vivi
%Y Roth, Benjamin
%Y Dietz, Laura
%Y McCallum, Andrew
%S Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F noriega-atala-etal-2019-understanding
%X An important task in the machine reading of biochemical events expressed in biomedical texts is correctly reading the polarity, i.e., attributing whether the biochemical event is a promotion or an inhibition. Here we present a novel dataset for studying polarity attribution accuracy. We use this dataset to train and evaluate several deep learning models for polarity identification, and compare these to a linguistically-informed model. The best performing deep learning architecture achieves 0.968 average F1 performance in a five-fold cross-validation study, a considerable improvement over the linguistically informed model average F1 of 0.862.
%R 10.18653/v1/W19-2603
%U https://aclanthology.org/W19-2603/
%U https://doi.org/10.18653/v1/W19-2603
%P 21-30
Markdown (Informal)
[Understanding the Polarity of Events in the Biomedical Literature: Deep Learning vs. Linguistically-informed Methods](https://aclanthology.org/W19-2603/) (Noriega-Atala et al., NAACL 2019)
ACL