@inproceedings{ge-etal-2019-detecting,
title = "Detecting and Extracting of Adverse Drug Reaction Mentioning Tweets with Multi-Head Self Attention",
author = "Ge, Suyu and
Qi, Tao and
Wu, Chuhan and
Huang, Yongfeng",
editor = "Weissenbacher, Davy and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of the Fourth Social Media Mining for Health Applications ({\#}SMM4H) Workshop {\&} Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3214/",
doi = "10.18653/v1/W19-3214",
pages = "96--98",
abstract = "This paper describes our system for the first and second shared tasks of the fourth Social Media Mining for Health Applications (SMM4H) workshop. We enhance tweet representation with a language model and distinguish the importance of different words with Multi-Head Self-Attention. In addition, transfer learning is exploited to make up for the data shortage. Our system achieved competitive results on both tasks with an F1-score of 0.5718 for task 1 and 0.653 (overlap) / 0.357 (strict) for task 2."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ge-etal-2019-detecting">
<titleInfo>
<title>Detecting and Extracting of Adverse Drug Reaction Mentioning Tweets with Multi-Head Self Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suyu</namePart>
<namePart type="family">Ge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuhan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongfeng</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system for the first and second shared tasks of the fourth Social Media Mining for Health Applications (SMM4H) workshop. We enhance tweet representation with a language model and distinguish the importance of different words with Multi-Head Self-Attention. In addition, transfer learning is exploited to make up for the data shortage. Our system achieved competitive results on both tasks with an F1-score of 0.5718 for task 1 and 0.653 (overlap) / 0.357 (strict) for task 2.</abstract>
<identifier type="citekey">ge-etal-2019-detecting</identifier>
<identifier type="doi">10.18653/v1/W19-3214</identifier>
<location>
<url>https://aclanthology.org/W19-3214/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>96</start>
<end>98</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting and Extracting of Adverse Drug Reaction Mentioning Tweets with Multi-Head Self Attention
%A Ge, Suyu
%A Qi, Tao
%A Wu, Chuhan
%A Huang, Yongfeng
%Y Weissenbacher, Davy
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F ge-etal-2019-detecting
%X This paper describes our system for the first and second shared tasks of the fourth Social Media Mining for Health Applications (SMM4H) workshop. We enhance tweet representation with a language model and distinguish the importance of different words with Multi-Head Self-Attention. In addition, transfer learning is exploited to make up for the data shortage. Our system achieved competitive results on both tasks with an F1-score of 0.5718 for task 1 and 0.653 (overlap) / 0.357 (strict) for task 2.
%R 10.18653/v1/W19-3214
%U https://aclanthology.org/W19-3214/
%U https://doi.org/10.18653/v1/W19-3214
%P 96-98
Markdown (Informal)
[Detecting and Extracting of Adverse Drug Reaction Mentioning Tweets with Multi-Head Self Attention](https://aclanthology.org/W19-3214/) (Ge et al., ACL 2019)
ACL