@inproceedings{manousogiannis-etal-2019-give,
title = "Give It a Shot: Few-shot Learning to Normalize {ADR} Mentions in Social Media Posts",
author = "Manousogiannis, Emmanouil and
Mesbah, Sepideh and
Bozzon, Alessandro and
Baez Santamaria, Selene and
Sips, Robert Jan",
editor = "Weissenbacher, Davy and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of the Fourth Social Media Mining for Health Applications ({\#}SMM4H) Workshop {\&} Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3219/",
doi = "10.18653/v1/W19-3219",
pages = "114--116",
abstract = "This paper describes the system that team MYTOMORROWS-TU DELFT developed for the 2019 Social Media Mining for Health Applications (SMM4H) Shared Task 3, for the end-to-end normalization of ADR tweet mentions to their corresponding MEDDRA codes. For the first two steps, we reuse a state-of-the art approach, focusing our contribution on the final entity-linking step. For that we propose a simple Few-Shot learning approach, based on pre-trained word embeddings and data from the UMLS, combined with the provided training data. Our system (relaxed F1: 0.337-0.345) outperforms the average (relaxed F1 0.2972) of the participants in this task, demonstrating the potential feasibility of few-shot learning in the context of medical text normalization."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="manousogiannis-etal-2019-give">
<titleInfo>
<title>Give It a Shot: Few-shot Learning to Normalize ADR Mentions in Social Media Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanouil</namePart>
<namePart type="family">Manousogiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sepideh</namePart>
<namePart type="family">Mesbah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Bozzon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Selene</namePart>
<namePart type="family">Baez Santamaria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">Jan</namePart>
<namePart type="family">Sips</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system that team MYTOMORROWS-TU DELFT developed for the 2019 Social Media Mining for Health Applications (SMM4H) Shared Task 3, for the end-to-end normalization of ADR tweet mentions to their corresponding MEDDRA codes. For the first two steps, we reuse a state-of-the art approach, focusing our contribution on the final entity-linking step. For that we propose a simple Few-Shot learning approach, based on pre-trained word embeddings and data from the UMLS, combined with the provided training data. Our system (relaxed F1: 0.337-0.345) outperforms the average (relaxed F1 0.2972) of the participants in this task, demonstrating the potential feasibility of few-shot learning in the context of medical text normalization.</abstract>
<identifier type="citekey">manousogiannis-etal-2019-give</identifier>
<identifier type="doi">10.18653/v1/W19-3219</identifier>
<location>
<url>https://aclanthology.org/W19-3219/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>114</start>
<end>116</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Give It a Shot: Few-shot Learning to Normalize ADR Mentions in Social Media Posts
%A Manousogiannis, Emmanouil
%A Mesbah, Sepideh
%A Bozzon, Alessandro
%A Baez Santamaria, Selene
%A Sips, Robert Jan
%Y Weissenbacher, Davy
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F manousogiannis-etal-2019-give
%X This paper describes the system that team MYTOMORROWS-TU DELFT developed for the 2019 Social Media Mining for Health Applications (SMM4H) Shared Task 3, for the end-to-end normalization of ADR tweet mentions to their corresponding MEDDRA codes. For the first two steps, we reuse a state-of-the art approach, focusing our contribution on the final entity-linking step. For that we propose a simple Few-Shot learning approach, based on pre-trained word embeddings and data from the UMLS, combined with the provided training data. Our system (relaxed F1: 0.337-0.345) outperforms the average (relaxed F1 0.2972) of the participants in this task, demonstrating the potential feasibility of few-shot learning in the context of medical text normalization.
%R 10.18653/v1/W19-3219
%U https://aclanthology.org/W19-3219/
%U https://doi.org/10.18653/v1/W19-3219
%P 114-116
Markdown (Informal)
[Give It a Shot: Few-shot Learning to Normalize ADR Mentions in Social Media Posts](https://aclanthology.org/W19-3219/) (Manousogiannis et al., ACL 2019)
ACL