@inproceedings{meyer-gamback-2019-platform,
    title = "A Platform Agnostic Dual-Strand Hate Speech Detector",
    author = {Meyer, Johannes Skjeggestad  and
      Gamb{\"a}ck, Bj{\"o}rn},
    editor = "Roberts, Sarah T.  and
      Tetreault, Joel  and
      Prabhakaran, Vinodkumar  and
      Waseem, Zeerak",
    booktitle = "Proceedings of the Third Workshop on Abusive Language Online",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-3516/",
    doi = "10.18653/v1/W19-3516",
    pages = "146--156",
    abstract = "Hate speech detectors must be applicable across a multitude of services and platforms, and there is hence a need for detection approaches that do not depend on any information specific to a given platform. For instance, the information stored about the text{'}s author may differ between services, and so using such data would reduce a system{'}s general applicability. The paper thus focuses on using exclusively text-based input in the detection, in an optimised architecture combining Convolutional Neural Networks and Long Short-Term Memory-networks. The hate speech detector merges two strands with character n-grams and word embeddings to produce the final classification, and is shown to outperform comparable previous approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meyer-gamback-2019-platform">
    <titleInfo>
        <title>A Platform Agnostic Dual-Strand Hate Speech Detector</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Johannes</namePart>
        <namePart type="given">Skjeggestad</namePart>
        <namePart type="family">Meyer</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Björn</namePart>
        <namePart type="family">Gambäck</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Workshop on Abusive Language Online</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Sarah</namePart>
            <namePart type="given">T</namePart>
            <namePart type="family">Roberts</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Joel</namePart>
            <namePart type="family">Tetreault</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Vinodkumar</namePart>
            <namePart type="family">Prabhakaran</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Zeerak</namePart>
            <namePart type="family">Waseem</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Hate speech detectors must be applicable across a multitude of services and platforms, and there is hence a need for detection approaches that do not depend on any information specific to a given platform. For instance, the information stored about the text’s author may differ between services, and so using such data would reduce a system’s general applicability. The paper thus focuses on using exclusively text-based input in the detection, in an optimised architecture combining Convolutional Neural Networks and Long Short-Term Memory-networks. The hate speech detector merges two strands with character n-grams and word embeddings to produce the final classification, and is shown to outperform comparable previous approaches.</abstract>
    <identifier type="citekey">meyer-gamback-2019-platform</identifier>
    <identifier type="doi">10.18653/v1/W19-3516</identifier>
    <location>
        <url>https://aclanthology.org/W19-3516/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>146</start>
            <end>156</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Platform Agnostic Dual-Strand Hate Speech Detector
%A Meyer, Johannes Skjeggestad
%A Gambäck, Björn
%Y Roberts, Sarah T.
%Y Tetreault, Joel
%Y Prabhakaran, Vinodkumar
%Y Waseem, Zeerak
%S Proceedings of the Third Workshop on Abusive Language Online
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F meyer-gamback-2019-platform
%X Hate speech detectors must be applicable across a multitude of services and platforms, and there is hence a need for detection approaches that do not depend on any information specific to a given platform. For instance, the information stored about the text’s author may differ between services, and so using such data would reduce a system’s general applicability. The paper thus focuses on using exclusively text-based input in the detection, in an optimised architecture combining Convolutional Neural Networks and Long Short-Term Memory-networks. The hate speech detector merges two strands with character n-grams and word embeddings to produce the final classification, and is shown to outperform comparable previous approaches.
%R 10.18653/v1/W19-3516
%U https://aclanthology.org/W19-3516/
%U https://doi.org/10.18653/v1/W19-3516
%P 146-156
Markdown (Informal)
[A Platform Agnostic Dual-Strand Hate Speech Detector](https://aclanthology.org/W19-3516/) (Meyer & Gambäck, ALW 2019)
ACL