@inproceedings{tutubalina-etal-2019-aspera,
    title = "{A}spe{R}a: Aspect-Based Rating Prediction Based on User Reviews",
    author = "Tutubalina, Elena  and
      Malykh, Valentin  and
      Nikolenko, Sergey  and
      Alekseev, Anton  and
      Shenbin, Ilya",
    editor = "Axelrod, Amittai  and
      Yang, Diyi  and
      Cunha, Rossana  and
      Shaikh, Samira  and
      Waseem, Zeerak",
    booktitle = "Proceedings of the 2019 Workshop on Widening NLP",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-3605/",
    pages = "11--13",
    abstract = "We propose a novel Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items. It is based on aspect extraction with neural networks and combines the advantages of deep learning and topic modeling. It is mainly designed for recommendations, but an important secondary goal of AspeRa is to discover coherent aspects of reviews that can be used to explain predictions or for user profiling. We conduct a comprehensive empirical study of AspeRa, showing that it outperforms state-of-the-art models in terms of recommendation quality and produces interpretable aspects. This paper is an abridged version of our work (Nikolenko et al., 2019)"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tutubalina-etal-2019-aspera">
    <titleInfo>
        <title>AspeRa: Aspect-Based Rating Prediction Based on User Reviews</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Elena</namePart>
        <namePart type="family">Tutubalina</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Valentin</namePart>
        <namePart type="family">Malykh</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sergey</namePart>
        <namePart type="family">Nikolenko</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Anton</namePart>
        <namePart type="family">Alekseev</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ilya</namePart>
        <namePart type="family">Shenbin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Workshop on Widening NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Amittai</namePart>
            <namePart type="family">Axelrod</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Diyi</namePart>
            <namePart type="family">Yang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rossana</namePart>
            <namePart type="family">Cunha</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Samira</namePart>
            <namePart type="family">Shaikh</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Zeerak</namePart>
            <namePart type="family">Waseem</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a novel Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items. It is based on aspect extraction with neural networks and combines the advantages of deep learning and topic modeling. It is mainly designed for recommendations, but an important secondary goal of AspeRa is to discover coherent aspects of reviews that can be used to explain predictions or for user profiling. We conduct a comprehensive empirical study of AspeRa, showing that it outperforms state-of-the-art models in terms of recommendation quality and produces interpretable aspects. This paper is an abridged version of our work (Nikolenko et al., 2019)</abstract>
    <identifier type="citekey">tutubalina-etal-2019-aspera</identifier>
    <location>
        <url>https://aclanthology.org/W19-3605/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>11</start>
            <end>13</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AspeRa: Aspect-Based Rating Prediction Based on User Reviews
%A Tutubalina, Elena
%A Malykh, Valentin
%A Nikolenko, Sergey
%A Alekseev, Anton
%A Shenbin, Ilya
%Y Axelrod, Amittai
%Y Yang, Diyi
%Y Cunha, Rossana
%Y Shaikh, Samira
%Y Waseem, Zeerak
%S Proceedings of the 2019 Workshop on Widening NLP
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F tutubalina-etal-2019-aspera
%X We propose a novel Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items. It is based on aspect extraction with neural networks and combines the advantages of deep learning and topic modeling. It is mainly designed for recommendations, but an important secondary goal of AspeRa is to discover coherent aspects of reviews that can be used to explain predictions or for user profiling. We conduct a comprehensive empirical study of AspeRa, showing that it outperforms state-of-the-art models in terms of recommendation quality and produces interpretable aspects. This paper is an abridged version of our work (Nikolenko et al., 2019)
%U https://aclanthology.org/W19-3605/
%P 11-13
Markdown (Informal)
[AspeRa: Aspect-Based Rating Prediction Based on User Reviews](https://aclanthology.org/W19-3605/) (Tutubalina et al., WiNLP 2019)
ACL