@inproceedings{fenglei-etal-2019-online,
title = "An Online Topic Modeling Framework with Topics Automatically Labeled",
author = "Fenglei, Jin and
Cuiyun, Gao and
Michael R., Lyu",
editor = "Axelrod, Amittai and
Yang, Diyi and
Cunha, Rossana and
Shaikh, Samira and
Waseem, Zeerak",
booktitle = "Proceedings of the 2019 Workshop on Widening NLP",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3624",
pages = "73--76",
abstract = "In this paper, we propose a novel online topic tracking framework, named IEDL, for tracking the topic changes related to deep learning techniques on Stack Exchange and automatically interpreting each identified topic. The proposed framework combines the prior topic distributions in a time window during inferring the topics in current time slice, and introduces a new ranking scheme to select most representative phrases and sentences for the inferred topics. Experiments on 7,076 Stack Exchange posts show the effectiveness of IEDL in tracking topic changes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fenglei-etal-2019-online">
<titleInfo>
<title>An Online Topic Modeling Framework with Topics Automatically Labeled</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Fenglei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gao</namePart>
<namePart type="family">Cuiyun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lyu</namePart>
<namePart type="family">Michael R.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Workshop on Widening NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amittai</namePart>
<namePart type="family">Axelrod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rossana</namePart>
<namePart type="family">Cunha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samira</namePart>
<namePart type="family">Shaikh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a novel online topic tracking framework, named IEDL, for tracking the topic changes related to deep learning techniques on Stack Exchange and automatically interpreting each identified topic. The proposed framework combines the prior topic distributions in a time window during inferring the topics in current time slice, and introduces a new ranking scheme to select most representative phrases and sentences for the inferred topics. Experiments on 7,076 Stack Exchange posts show the effectiveness of IEDL in tracking topic changes.</abstract>
<identifier type="citekey">fenglei-etal-2019-online</identifier>
<location>
<url>https://aclanthology.org/W19-3624</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>73</start>
<end>76</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Online Topic Modeling Framework with Topics Automatically Labeled
%A Fenglei, Jin
%A Cuiyun, Gao
%A Michael R., Lyu
%Y Axelrod, Amittai
%Y Yang, Diyi
%Y Cunha, Rossana
%Y Shaikh, Samira
%Y Waseem, Zeerak
%S Proceedings of the 2019 Workshop on Widening NLP
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F fenglei-etal-2019-online
%X In this paper, we propose a novel online topic tracking framework, named IEDL, for tracking the topic changes related to deep learning techniques on Stack Exchange and automatically interpreting each identified topic. The proposed framework combines the prior topic distributions in a time window during inferring the topics in current time slice, and introduces a new ranking scheme to select most representative phrases and sentences for the inferred topics. Experiments on 7,076 Stack Exchange posts show the effectiveness of IEDL in tracking topic changes.
%U https://aclanthology.org/W19-3624
%P 73-76
Markdown (Informal)
[An Online Topic Modeling Framework with Topics Automatically Labeled](https://aclanthology.org/W19-3624) (Fenglei et al., WiNLP 2019)
ACL