@inproceedings{bhaskaran-bhallamudi-2019-good,
title = "Good Secretaries, Bad Truck Drivers? Occupational Gender Stereotypes in Sentiment Analysis",
author = "Bhaskaran, Jayadev and
Bhallamudi, Isha",
editor = "Costa-juss{\`a}, Marta R. and
Hardmeier, Christian and
Radford, Will and
Webster, Kellie",
booktitle = "Proceedings of the First Workshop on Gender Bias in Natural Language Processing",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3809/",
doi = "10.18653/v1/W19-3809",
pages = "62--68",
abstract = "In this work, we investigate the presence of occupational gender stereotypes in sentiment analysis models. Such a task has implications in reducing implicit biases in these models, which are being applied to an increasingly wide variety of downstream tasks. We release a new gender-balanced dataset of 800 sentences pertaining to specific professions and propose a methodology for using it as a test bench to evaluate sentiment analysis models. We evaluate the presence of occupational gender stereotypes in 3 different models using our approach, and explore their relationship with societal perceptions of occupations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhaskaran-bhallamudi-2019-good">
<titleInfo>
<title>Good Secretaries, Bad Truck Drivers? Occupational Gender Stereotypes in Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jayadev</namePart>
<namePart type="family">Bhaskaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isha</namePart>
<namePart type="family">Bhallamudi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Gender Bias in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Radford</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we investigate the presence of occupational gender stereotypes in sentiment analysis models. Such a task has implications in reducing implicit biases in these models, which are being applied to an increasingly wide variety of downstream tasks. We release a new gender-balanced dataset of 800 sentences pertaining to specific professions and propose a methodology for using it as a test bench to evaluate sentiment analysis models. We evaluate the presence of occupational gender stereotypes in 3 different models using our approach, and explore their relationship with societal perceptions of occupations.</abstract>
<identifier type="citekey">bhaskaran-bhallamudi-2019-good</identifier>
<identifier type="doi">10.18653/v1/W19-3809</identifier>
<location>
<url>https://aclanthology.org/W19-3809/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>62</start>
<end>68</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Good Secretaries, Bad Truck Drivers? Occupational Gender Stereotypes in Sentiment Analysis
%A Bhaskaran, Jayadev
%A Bhallamudi, Isha
%Y Costa-jussà, Marta R.
%Y Hardmeier, Christian
%Y Radford, Will
%Y Webster, Kellie
%S Proceedings of the First Workshop on Gender Bias in Natural Language Processing
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F bhaskaran-bhallamudi-2019-good
%X In this work, we investigate the presence of occupational gender stereotypes in sentiment analysis models. Such a task has implications in reducing implicit biases in these models, which are being applied to an increasingly wide variety of downstream tasks. We release a new gender-balanced dataset of 800 sentences pertaining to specific professions and propose a methodology for using it as a test bench to evaluate sentiment analysis models. We evaluate the presence of occupational gender stereotypes in 3 different models using our approach, and explore their relationship with societal perceptions of occupations.
%R 10.18653/v1/W19-3809
%U https://aclanthology.org/W19-3809/
%U https://doi.org/10.18653/v1/W19-3809
%P 62-68
Markdown (Informal)
[Good Secretaries, Bad Truck Drivers? Occupational Gender Stereotypes in Sentiment Analysis](https://aclanthology.org/W19-3809/) (Bhaskaran & Bhallamudi, GeBNLP 2019)
ACL