@inproceedings{bao-qiao-2019-transfer,
title = "Transfer Learning from Pre-trained {BERT} for Pronoun Resolution",
author = "Bao, Xingce and
Qiao, Qianqian",
editor = "Costa-juss{\`a}, Marta R. and
Hardmeier, Christian and
Radford, Will and
Webster, Kellie",
booktitle = "Proceedings of the First Workshop on Gender Bias in Natural Language Processing",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3812",
doi = "10.18653/v1/W19-3812",
pages = "82--88",
abstract = "The paper describes the submission of the team {``}We used bert!{''} to the shared task Gendered Pronoun Resolution (Pair pronouns to their correct entities). Our final submission model based on the fine-tuned BERT (Bidirectional Encoder Representations from Transformers) ranks 14th among 838 teams with a multi-class logarithmic loss of 0.208. In this work, contribution of transfer learning technique to pronoun resolution systems is investigated and the gender bias contained in classification models is evaluated.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bao-qiao-2019-transfer">
<titleInfo>
<title>Transfer Learning from Pre-trained BERT for Pronoun Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xingce</namePart>
<namePart type="family">Bao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qianqian</namePart>
<namePart type="family">Qiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Gender Bias in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Radford</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper describes the submission of the team “We used bert!” to the shared task Gendered Pronoun Resolution (Pair pronouns to their correct entities). Our final submission model based on the fine-tuned BERT (Bidirectional Encoder Representations from Transformers) ranks 14th among 838 teams with a multi-class logarithmic loss of 0.208. In this work, contribution of transfer learning technique to pronoun resolution systems is investigated and the gender bias contained in classification models is evaluated.</abstract>
<identifier type="citekey">bao-qiao-2019-transfer</identifier>
<identifier type="doi">10.18653/v1/W19-3812</identifier>
<location>
<url>https://aclanthology.org/W19-3812</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>82</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transfer Learning from Pre-trained BERT for Pronoun Resolution
%A Bao, Xingce
%A Qiao, Qianqian
%Y Costa-jussà, Marta R.
%Y Hardmeier, Christian
%Y Radford, Will
%Y Webster, Kellie
%S Proceedings of the First Workshop on Gender Bias in Natural Language Processing
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F bao-qiao-2019-transfer
%X The paper describes the submission of the team “We used bert!” to the shared task Gendered Pronoun Resolution (Pair pronouns to their correct entities). Our final submission model based on the fine-tuned BERT (Bidirectional Encoder Representations from Transformers) ranks 14th among 838 teams with a multi-class logarithmic loss of 0.208. In this work, contribution of transfer learning technique to pronoun resolution systems is investigated and the gender bias contained in classification models is evaluated.
%R 10.18653/v1/W19-3812
%U https://aclanthology.org/W19-3812
%U https://doi.org/10.18653/v1/W19-3812
%P 82-88
Markdown (Informal)
[Transfer Learning from Pre-trained BERT for Pronoun Resolution](https://aclanthology.org/W19-3812) (Bao & Qiao, GeBNLP 2019)
ACL