@inproceedings{xu-yang-2019-look,
title = "Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution",
author = "Xu, Yinchuan and
Yang, Junlin",
editor = "Costa-juss{\`a}, Marta R. and
Hardmeier, Christian and
Radford, Will and
Webster, Kellie",
booktitle = "Proceedings of the First Workshop on Gender Bias in Natural Language Processing",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3814/",
doi = "10.18653/v1/W19-3814",
pages = "96--101",
abstract = "Gender bias has been found in existing coreference resolvers. In order to eliminate gender bias, a gender-balanced dataset Gendered Ambiguous Pronouns (GAP) has been released and the best baseline model achieves only 66.9{\%} F1. Bidirectional Encoder Representations from Transformers (BERT) has broken several NLP task records and can be used on GAP dataset. However, fine-tune BERT on a specific task is computationally expensive. In this paper, we propose an end-to-end resolver by combining pre-trained BERT with Relational Graph Convolutional Network (R-GCN). R-GCN is used for digesting structural syntactic information and learning better task-specific embeddings. Empirical results demonstrate that, under explicit syntactic supervision and without the need to fine tune BERT, R-GCN`s embeddings outperform the original BERT embeddings on the coreference task. Our work significantly improves the snippet-context baseline F1 score on GAP dataset from 66.9{\%} to 80.3{\%}. We participated in the Gender Bias for Natural Language Processing 2019 shared task, and our codes are available online."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-yang-2019-look">
<titleInfo>
<title>Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yinchuan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junlin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Gender Bias in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Radford</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gender bias has been found in existing coreference resolvers. In order to eliminate gender bias, a gender-balanced dataset Gendered Ambiguous Pronouns (GAP) has been released and the best baseline model achieves only 66.9% F1. Bidirectional Encoder Representations from Transformers (BERT) has broken several NLP task records and can be used on GAP dataset. However, fine-tune BERT on a specific task is computationally expensive. In this paper, we propose an end-to-end resolver by combining pre-trained BERT with Relational Graph Convolutional Network (R-GCN). R-GCN is used for digesting structural syntactic information and learning better task-specific embeddings. Empirical results demonstrate that, under explicit syntactic supervision and without the need to fine tune BERT, R-GCN‘s embeddings outperform the original BERT embeddings on the coreference task. Our work significantly improves the snippet-context baseline F1 score on GAP dataset from 66.9% to 80.3%. We participated in the Gender Bias for Natural Language Processing 2019 shared task, and our codes are available online.</abstract>
<identifier type="citekey">xu-yang-2019-look</identifier>
<identifier type="doi">10.18653/v1/W19-3814</identifier>
<location>
<url>https://aclanthology.org/W19-3814/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>96</start>
<end>101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution
%A Xu, Yinchuan
%A Yang, Junlin
%Y Costa-jussà, Marta R.
%Y Hardmeier, Christian
%Y Radford, Will
%Y Webster, Kellie
%S Proceedings of the First Workshop on Gender Bias in Natural Language Processing
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F xu-yang-2019-look
%X Gender bias has been found in existing coreference resolvers. In order to eliminate gender bias, a gender-balanced dataset Gendered Ambiguous Pronouns (GAP) has been released and the best baseline model achieves only 66.9% F1. Bidirectional Encoder Representations from Transformers (BERT) has broken several NLP task records and can be used on GAP dataset. However, fine-tune BERT on a specific task is computationally expensive. In this paper, we propose an end-to-end resolver by combining pre-trained BERT with Relational Graph Convolutional Network (R-GCN). R-GCN is used for digesting structural syntactic information and learning better task-specific embeddings. Empirical results demonstrate that, under explicit syntactic supervision and without the need to fine tune BERT, R-GCN‘s embeddings outperform the original BERT embeddings on the coreference task. Our work significantly improves the snippet-context baseline F1 score on GAP dataset from 66.9% to 80.3%. We participated in the Gender Bias for Natural Language Processing 2019 shared task, and our codes are available online.
%R 10.18653/v1/W19-3814
%U https://aclanthology.org/W19-3814/
%U https://doi.org/10.18653/v1/W19-3814
%P 96-101
Markdown (Informal)
[Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution](https://aclanthology.org/W19-3814/) (Xu & Yang, GeBNLP 2019)
ACL