@inproceedings{yang-etal-2019-fill,
title = "Fill the {GAP}: Exploiting {BERT} for Pronoun Resolution",
author = "Yang, Kai-Chou and
Niven, Timothy and
Chou, Tzu Hsuan and
Kao, Hung-Yu",
editor = "Costa-juss{\`a}, Marta R. and
Hardmeier, Christian and
Radford, Will and
Webster, Kellie",
booktitle = "Proceedings of the First Workshop on Gender Bias in Natural Language Processing",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3815/",
doi = "10.18653/v1/W19-3815",
pages = "102--106",
abstract = "In this paper, we describe our entry in the gendered pronoun resolution competition which achieved fourth place without data augmentation. Our method is an ensemble system of BERTs which resolves co-reference in an interaction space. We report four insights from our work: BERT`s representations involve significant redundancy; modeling interaction effects similar to natural language inference models is useful for this task; there is an optimal BERT layer to extract representations for pronoun resolution; and the difference between the attention weights from the pronoun to the candidate entities was highly correlated with the correct label, with interesting implications for future work."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2019-fill">
<titleInfo>
<title>Fill the GAP: Exploiting BERT for Pronoun Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Chou</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Niven</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tzu</namePart>
<namePart type="given">Hsuan</namePart>
<namePart type="family">Chou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-Yu</namePart>
<namePart type="family">Kao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Gender Bias in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Radford</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe our entry in the gendered pronoun resolution competition which achieved fourth place without data augmentation. Our method is an ensemble system of BERTs which resolves co-reference in an interaction space. We report four insights from our work: BERT‘s representations involve significant redundancy; modeling interaction effects similar to natural language inference models is useful for this task; there is an optimal BERT layer to extract representations for pronoun resolution; and the difference between the attention weights from the pronoun to the candidate entities was highly correlated with the correct label, with interesting implications for future work.</abstract>
<identifier type="citekey">yang-etal-2019-fill</identifier>
<identifier type="doi">10.18653/v1/W19-3815</identifier>
<location>
<url>https://aclanthology.org/W19-3815/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>102</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fill the GAP: Exploiting BERT for Pronoun Resolution
%A Yang, Kai-Chou
%A Niven, Timothy
%A Chou, Tzu Hsuan
%A Kao, Hung-Yu
%Y Costa-jussà, Marta R.
%Y Hardmeier, Christian
%Y Radford, Will
%Y Webster, Kellie
%S Proceedings of the First Workshop on Gender Bias in Natural Language Processing
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F yang-etal-2019-fill
%X In this paper, we describe our entry in the gendered pronoun resolution competition which achieved fourth place without data augmentation. Our method is an ensemble system of BERTs which resolves co-reference in an interaction space. We report four insights from our work: BERT‘s representations involve significant redundancy; modeling interaction effects similar to natural language inference models is useful for this task; there is an optimal BERT layer to extract representations for pronoun resolution; and the difference between the attention weights from the pronoun to the candidate entities was highly correlated with the correct label, with interesting implications for future work.
%R 10.18653/v1/W19-3815
%U https://aclanthology.org/W19-3815/
%U https://doi.org/10.18653/v1/W19-3815
%P 102-106
Markdown (Informal)
[Fill the GAP: Exploiting BERT for Pronoun Resolution](https://aclanthology.org/W19-3815/) (Yang et al., GeBNLP 2019)
ACL
- Kai-Chou Yang, Timothy Niven, Tzu Hsuan Chou, and Hung-Yu Kao. 2019. Fill the GAP: Exploiting BERT for Pronoun Resolution. In Proceedings of the First Workshop on Gender Bias in Natural Language Processing, pages 102–106, Florence, Italy. Association for Computational Linguistics.