@inproceedings{habash-etal-2019-automatic,
title = "Automatic Gender Identification and Reinflection in {A}rabic",
author = "Habash, Nizar and
Bouamor, Houda and
Chung, Christine",
editor = "Costa-juss{\`a}, Marta R. and
Hardmeier, Christian and
Radford, Will and
Webster, Kellie",
booktitle = "Proceedings of the First Workshop on Gender Bias in Natural Language Processing",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3822/",
doi = "10.18653/v1/W19-3822",
pages = "155--165",
abstract = "The impressive progress in many Natural Language Processing (NLP) applications has increased the awareness of some of the biases these NLP systems have with regards to gender identities. In this paper, we propose an approach to extend biased single-output gender-blind NLP systems with gender-specific alternative reinflections. We focus on Arabic, a gender-marking morphologically rich language, in the context of machine translation (MT) from English, and for first-person-singular constructions only. Our contributions are the development of a system-independent gender-awareness wrapper, and the building of a corpus for training and evaluating first-person-singular gender identification and reinflection in Arabic. Our results successfully demonstrate the viability of this approach with 8{\%} relative increase in Bleu score for first-person-singular feminine, and 5.3{\%} comparable increase for first-person-singular masculine on top of a state-of-the-art gender-blind MT system on a held-out test set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="habash-etal-2019-automatic">
<titleInfo>
<title>Automatic Gender Identification and Reinflection in Arabic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Chung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Gender Bias in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Radford</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The impressive progress in many Natural Language Processing (NLP) applications has increased the awareness of some of the biases these NLP systems have with regards to gender identities. In this paper, we propose an approach to extend biased single-output gender-blind NLP systems with gender-specific alternative reinflections. We focus on Arabic, a gender-marking morphologically rich language, in the context of machine translation (MT) from English, and for first-person-singular constructions only. Our contributions are the development of a system-independent gender-awareness wrapper, and the building of a corpus for training and evaluating first-person-singular gender identification and reinflection in Arabic. Our results successfully demonstrate the viability of this approach with 8% relative increase in Bleu score for first-person-singular feminine, and 5.3% comparable increase for first-person-singular masculine on top of a state-of-the-art gender-blind MT system on a held-out test set.</abstract>
<identifier type="citekey">habash-etal-2019-automatic</identifier>
<identifier type="doi">10.18653/v1/W19-3822</identifier>
<location>
<url>https://aclanthology.org/W19-3822/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>155</start>
<end>165</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Gender Identification and Reinflection in Arabic
%A Habash, Nizar
%A Bouamor, Houda
%A Chung, Christine
%Y Costa-jussà, Marta R.
%Y Hardmeier, Christian
%Y Radford, Will
%Y Webster, Kellie
%S Proceedings of the First Workshop on Gender Bias in Natural Language Processing
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F habash-etal-2019-automatic
%X The impressive progress in many Natural Language Processing (NLP) applications has increased the awareness of some of the biases these NLP systems have with regards to gender identities. In this paper, we propose an approach to extend biased single-output gender-blind NLP systems with gender-specific alternative reinflections. We focus on Arabic, a gender-marking morphologically rich language, in the context of machine translation (MT) from English, and for first-person-singular constructions only. Our contributions are the development of a system-independent gender-awareness wrapper, and the building of a corpus for training and evaluating first-person-singular gender identification and reinflection in Arabic. Our results successfully demonstrate the viability of this approach with 8% relative increase in Bleu score for first-person-singular feminine, and 5.3% comparable increase for first-person-singular masculine on top of a state-of-the-art gender-blind MT system on a held-out test set.
%R 10.18653/v1/W19-3822
%U https://aclanthology.org/W19-3822/
%U https://doi.org/10.18653/v1/W19-3822
%P 155-165
Markdown (Informal)
[Automatic Gender Identification and Reinflection in Arabic](https://aclanthology.org/W19-3822/) (Habash et al., GeBNLP 2019)
ACL