@inproceedings{xiao-etal-2019-grammatical,
title = "Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing",
author = "Xiao, Chunyang and
Teichmann, Christoph and
Arkoudas, Konstantine",
editor = "Eisner, Jason and
Gall{\'e}, Matthias and
Heinz, Jeffrey and
Quattoni, Ariadna and
Rabusseau, Guillaume",
booktitle = "Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges",
month = aug,
year = "2019",
address = "Florence",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3902",
doi = "10.18653/v1/W19-3902",
pages = "14--23",
abstract = "While sequence-to-sequence (seq2seq) models achieve state-of-the-art performance in many natural language processing tasks, they can be too slow for real-time applications. One performance bottleneck is predicting the most likely next token over a large vocabulary; methods to circumvent this bottleneck are a current research topic. We focus specifically on using seq2seq models for semantic parsing, where we observe that grammars often exist which specify valid formal representations of utterance semantics. By developing a generic approach for restricting the predictions of a seq2seq model to grammatically permissible continuations, we arrive at a widely applicable technique for speeding up semantic parsing. The technique leads to a 74{\%} speed-up on an in-house dataset with a large vocabulary, compared to the same neural model without grammatical restrictions",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xiao-etal-2019-grammatical">
<titleInfo>
<title>Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chunyang</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christoph</namePart>
<namePart type="family">Teichmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantine</namePart>
<namePart type="family">Arkoudas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Gallé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Heinz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ariadna</namePart>
<namePart type="family">Quattoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Rabusseau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While sequence-to-sequence (seq2seq) models achieve state-of-the-art performance in many natural language processing tasks, they can be too slow for real-time applications. One performance bottleneck is predicting the most likely next token over a large vocabulary; methods to circumvent this bottleneck are a current research topic. We focus specifically on using seq2seq models for semantic parsing, where we observe that grammars often exist which specify valid formal representations of utterance semantics. By developing a generic approach for restricting the predictions of a seq2seq model to grammatically permissible continuations, we arrive at a widely applicable technique for speeding up semantic parsing. The technique leads to a 74% speed-up on an in-house dataset with a large vocabulary, compared to the same neural model without grammatical restrictions</abstract>
<identifier type="citekey">xiao-etal-2019-grammatical</identifier>
<identifier type="doi">10.18653/v1/W19-3902</identifier>
<location>
<url>https://aclanthology.org/W19-3902</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>14</start>
<end>23</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing
%A Xiao, Chunyang
%A Teichmann, Christoph
%A Arkoudas, Konstantine
%Y Eisner, Jason
%Y Gallé, Matthias
%Y Heinz, Jeffrey
%Y Quattoni, Ariadna
%Y Rabusseau, Guillaume
%S Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence
%F xiao-etal-2019-grammatical
%X While sequence-to-sequence (seq2seq) models achieve state-of-the-art performance in many natural language processing tasks, they can be too slow for real-time applications. One performance bottleneck is predicting the most likely next token over a large vocabulary; methods to circumvent this bottleneck are a current research topic. We focus specifically on using seq2seq models for semantic parsing, where we observe that grammars often exist which specify valid formal representations of utterance semantics. By developing a generic approach for restricting the predictions of a seq2seq model to grammatically permissible continuations, we arrive at a widely applicable technique for speeding up semantic parsing. The technique leads to a 74% speed-up on an in-house dataset with a large vocabulary, compared to the same neural model without grammatical restrictions
%R 10.18653/v1/W19-3902
%U https://aclanthology.org/W19-3902
%U https://doi.org/10.18653/v1/W19-3902
%P 14-23
Markdown (Informal)
[Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing](https://aclanthology.org/W19-3902) (Xiao et al., ACL 2019)
ACL