@inproceedings{xiao-etal-2019-grammatical,
    title = "Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing",
    author = "Xiao, Chunyang  and
      Teichmann, Christoph  and
      Arkoudas, Konstantine",
    editor = "Eisner, Jason  and
      Gall{\'e}, Matthias  and
      Heinz, Jeffrey  and
      Quattoni, Ariadna  and
      Rabusseau, Guillaume",
    booktitle = "Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges",
    month = aug,
    year = "2019",
    address = "Florence",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-3902/",
    doi = "10.18653/v1/W19-3902",
    pages = "14--23",
    abstract = "While sequence-to-sequence (seq2seq) models achieve state-of-the-art performance in many natural language processing tasks, they can be too slow for real-time applications. One performance bottleneck is predicting the most likely next token over a large vocabulary; methods to circumvent this bottleneck are a current research topic. We focus specifically on using seq2seq models for semantic parsing, where we observe that grammars often exist which specify valid formal representations of utterance semantics. By developing a generic approach for restricting the predictions of a seq2seq model to grammatically permissible continuations, we arrive at a widely applicable technique for speeding up semantic parsing. The technique leads to a 74{\%} speed-up on an in-house dataset with a large vocabulary, compared to the same neural model without grammatical restrictions"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xiao-etal-2019-grammatical">
    <titleInfo>
        <title>Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Chunyang</namePart>
        <namePart type="family">Xiao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Christoph</namePart>
        <namePart type="family">Teichmann</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Konstantine</namePart>
        <namePart type="family">Arkoudas</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jason</namePart>
            <namePart type="family">Eisner</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matthias</namePart>
            <namePart type="family">Gallé</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jeffrey</namePart>
            <namePart type="family">Heinz</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ariadna</namePart>
            <namePart type="family">Quattoni</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Guillaume</namePart>
            <namePart type="family">Rabusseau</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>While sequence-to-sequence (seq2seq) models achieve state-of-the-art performance in many natural language processing tasks, they can be too slow for real-time applications. One performance bottleneck is predicting the most likely next token over a large vocabulary; methods to circumvent this bottleneck are a current research topic. We focus specifically on using seq2seq models for semantic parsing, where we observe that grammars often exist which specify valid formal representations of utterance semantics. By developing a generic approach for restricting the predictions of a seq2seq model to grammatically permissible continuations, we arrive at a widely applicable technique for speeding up semantic parsing. The technique leads to a 74% speed-up on an in-house dataset with a large vocabulary, compared to the same neural model without grammatical restrictions</abstract>
    <identifier type="citekey">xiao-etal-2019-grammatical</identifier>
    <identifier type="doi">10.18653/v1/W19-3902</identifier>
    <location>
        <url>https://aclanthology.org/W19-3902/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>14</start>
            <end>23</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing
%A Xiao, Chunyang
%A Teichmann, Christoph
%A Arkoudas, Konstantine
%Y Eisner, Jason
%Y Gallé, Matthias
%Y Heinz, Jeffrey
%Y Quattoni, Ariadna
%Y Rabusseau, Guillaume
%S Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence
%F xiao-etal-2019-grammatical
%X While sequence-to-sequence (seq2seq) models achieve state-of-the-art performance in many natural language processing tasks, they can be too slow for real-time applications. One performance bottleneck is predicting the most likely next token over a large vocabulary; methods to circumvent this bottleneck are a current research topic. We focus specifically on using seq2seq models for semantic parsing, where we observe that grammars often exist which specify valid formal representations of utterance semantics. By developing a generic approach for restricting the predictions of a seq2seq model to grammatically permissible continuations, we arrive at a widely applicable technique for speeding up semantic parsing. The technique leads to a 74% speed-up on an in-house dataset with a large vocabulary, compared to the same neural model without grammatical restrictions
%R 10.18653/v1/W19-3902
%U https://aclanthology.org/W19-3902/
%U https://doi.org/10.18653/v1/W19-3902
%P 14-23
Markdown (Informal)
[Grammatical Sequence Prediction for Real-Time Neural Semantic Parsing](https://aclanthology.org/W19-3902/) (Xiao et al., ACL 2019)
ACL