@inproceedings{chen-etal-2019-improving-long,
title = "Improving Long Distance Slot Carryover in Spoken Dialogue Systems",
author = "Chen, Tongfei and
Naik, Chetan and
He, Hua and
Rastogi, Pushpendre and
Mathias, Lambert",
editor = "Chen, Yun-Nung and
Bedrax-Weiss, Tania and
Hakkani-Tur, Dilek and
Kumar, Anuj and
Lewis, Mike and
Luong, Thang-Minh and
Su, Pei-Hao and
Wen, Tsung-Hsien",
booktitle = "Proceedings of the First Workshop on NLP for Conversational AI",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4111",
doi = "10.18653/v1/W19-4111",
pages = "96--105",
abstract = "Tracking the state of the conversation is a central component in task-oriented spoken dialogue systems. One such approach for tracking the dialogue state is slot carryover, where a model makes a binary decision if a slot from the context is relevant to the current turn. Previous work on the slot carryover task used models that made independent decisions for each slot. A close analysis of the results show that this approach results in poor performance over longer context dialogues. In this paper, we propose to jointly model the slots. We propose two neural network architectures, one based on pointer networks that incorporate slot ordering information, and the other based on transformer networks that uses self attention mechanism to model the slot interdependencies. Our experiments on an internal dialogue benchmark dataset and on the public DSTC2 dataset demonstrate that our proposed models are able to resolve longer distance slot references and are able to achieve competitive performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2019-improving-long">
<titleInfo>
<title>Improving Long Distance Slot Carryover in Spoken Dialogue Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tongfei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chetan</namePart>
<namePart type="family">Naik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpendre</namePart>
<namePart type="family">Rastogi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lambert</namePart>
<namePart type="family">Mathias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on NLP for Conversational AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tania</namePart>
<namePart type="family">Bedrax-Weiss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anuj</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Lewis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thang-Minh</namePart>
<namePart type="family">Luong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pei-Hao</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsung-Hsien</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Tracking the state of the conversation is a central component in task-oriented spoken dialogue systems. One such approach for tracking the dialogue state is slot carryover, where a model makes a binary decision if a slot from the context is relevant to the current turn. Previous work on the slot carryover task used models that made independent decisions for each slot. A close analysis of the results show that this approach results in poor performance over longer context dialogues. In this paper, we propose to jointly model the slots. We propose two neural network architectures, one based on pointer networks that incorporate slot ordering information, and the other based on transformer networks that uses self attention mechanism to model the slot interdependencies. Our experiments on an internal dialogue benchmark dataset and on the public DSTC2 dataset demonstrate that our proposed models are able to resolve longer distance slot references and are able to achieve competitive performance.</abstract>
<identifier type="citekey">chen-etal-2019-improving-long</identifier>
<identifier type="doi">10.18653/v1/W19-4111</identifier>
<location>
<url>https://aclanthology.org/W19-4111</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>96</start>
<end>105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Long Distance Slot Carryover in Spoken Dialogue Systems
%A Chen, Tongfei
%A Naik, Chetan
%A He, Hua
%A Rastogi, Pushpendre
%A Mathias, Lambert
%Y Chen, Yun-Nung
%Y Bedrax-Weiss, Tania
%Y Hakkani-Tur, Dilek
%Y Kumar, Anuj
%Y Lewis, Mike
%Y Luong, Thang-Minh
%Y Su, Pei-Hao
%Y Wen, Tsung-Hsien
%S Proceedings of the First Workshop on NLP for Conversational AI
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F chen-etal-2019-improving-long
%X Tracking the state of the conversation is a central component in task-oriented spoken dialogue systems. One such approach for tracking the dialogue state is slot carryover, where a model makes a binary decision if a slot from the context is relevant to the current turn. Previous work on the slot carryover task used models that made independent decisions for each slot. A close analysis of the results show that this approach results in poor performance over longer context dialogues. In this paper, we propose to jointly model the slots. We propose two neural network architectures, one based on pointer networks that incorporate slot ordering information, and the other based on transformer networks that uses self attention mechanism to model the slot interdependencies. Our experiments on an internal dialogue benchmark dataset and on the public DSTC2 dataset demonstrate that our proposed models are able to resolve longer distance slot references and are able to achieve competitive performance.
%R 10.18653/v1/W19-4111
%U https://aclanthology.org/W19-4111
%U https://doi.org/10.18653/v1/W19-4111
%P 96-105
Markdown (Informal)
[Improving Long Distance Slot Carryover in Spoken Dialogue Systems](https://aclanthology.org/W19-4111) (Chen et al., ACL 2019)
ACL