@inproceedings{apostolova-etal-2019-combining,
    title = "Combining Structured and Free-text Electronic Medical Record Data for Real-time Clinical Decision Support",
    author = "Apostolova, Emilia  and
      Wang, Tony  and
      Tschampel, Tim  and
      Koutroulis, Ioannis  and
      Velez, Tom",
    editor = "Demner-Fushman, Dina  and
      Cohen, Kevin Bretonnel  and
      Ananiadou, Sophia  and
      Tsujii, Junichi",
    booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-5007/",
    doi = "10.18653/v1/W19-5007",
    pages = "66--70",
    abstract = "The goal of this work is to utilize Electronic Medical Record (EMR) data for real-time Clinical Decision Support (CDS). We present a deep learning approach to combining in real time available diagnosis codes (ICD codes) and free-text notes: Patient Context Vectors. Patient Context Vectors are created by averaging ICD code embeddings, and by predicting the same from free-text notes via a Convolutional Neural Network. The Patient Context Vectors were then simply appended to available structured data (vital signs and lab results) to build prediction models for a specific condition. Experiments on predicting ARDS, a rare and complex condition, demonstrate the utility of Patient Context Vectors as a means of summarizing the patient history and overall condition, and improve significantly the prediction model results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="apostolova-etal-2019-combining">
    <titleInfo>
        <title>Combining Structured and Free-text Electronic Medical Record Data for Real-time Clinical Decision Support</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Emilia</namePart>
        <namePart type="family">Apostolova</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tony</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tim</namePart>
        <namePart type="family">Tschampel</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ioannis</namePart>
        <namePart type="family">Koutroulis</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tom</namePart>
        <namePart type="family">Velez</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Dina</namePart>
            <namePart type="family">Demner-Fushman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kevin</namePart>
            <namePart type="given">Bretonnel</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sophia</namePart>
            <namePart type="family">Ananiadou</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Junichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The goal of this work is to utilize Electronic Medical Record (EMR) data for real-time Clinical Decision Support (CDS). We present a deep learning approach to combining in real time available diagnosis codes (ICD codes) and free-text notes: Patient Context Vectors. Patient Context Vectors are created by averaging ICD code embeddings, and by predicting the same from free-text notes via a Convolutional Neural Network. The Patient Context Vectors were then simply appended to available structured data (vital signs and lab results) to build prediction models for a specific condition. Experiments on predicting ARDS, a rare and complex condition, demonstrate the utility of Patient Context Vectors as a means of summarizing the patient history and overall condition, and improve significantly the prediction model results.</abstract>
    <identifier type="citekey">apostolova-etal-2019-combining</identifier>
    <identifier type="doi">10.18653/v1/W19-5007</identifier>
    <location>
        <url>https://aclanthology.org/W19-5007/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>66</start>
            <end>70</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Combining Structured and Free-text Electronic Medical Record Data for Real-time Clinical Decision Support
%A Apostolova, Emilia
%A Wang, Tony
%A Tschampel, Tim
%A Koutroulis, Ioannis
%A Velez, Tom
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F apostolova-etal-2019-combining
%X The goal of this work is to utilize Electronic Medical Record (EMR) data for real-time Clinical Decision Support (CDS). We present a deep learning approach to combining in real time available diagnosis codes (ICD codes) and free-text notes: Patient Context Vectors. Patient Context Vectors are created by averaging ICD code embeddings, and by predicting the same from free-text notes via a Convolutional Neural Network. The Patient Context Vectors were then simply appended to available structured data (vital signs and lab results) to build prediction models for a specific condition. Experiments on predicting ARDS, a rare and complex condition, demonstrate the utility of Patient Context Vectors as a means of summarizing the patient history and overall condition, and improve significantly the prediction model results.
%R 10.18653/v1/W19-5007
%U https://aclanthology.org/W19-5007/
%U https://doi.org/10.18653/v1/W19-5007
%P 66-70
Markdown (Informal)
[Combining Structured and Free-text Electronic Medical Record Data for Real-time Clinical Decision Support](https://aclanthology.org/W19-5007/) (Apostolova et al., BioNLP 2019)
ACL