@inproceedings{lopes-etal-2019-contributions,
title = "Contributions to Clinical Named Entity Recognition in {P}ortuguese",
author = "Lopes, F{\'a}bio and
Teixeira, C{\'e}sar and
Gon{\c{c}}alo Oliveira, Hugo",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5024",
doi = "10.18653/v1/W19-5024",
pages = "223--233",
abstract = "Having in mind that different languages might present different challenges, this paper presents the following contributions to the area of Information Extraction from clinical text, targeting the Portuguese language: a collection of 281 clinical texts in this language, with manually-annotated named entities; word embeddings trained in a larger collection of similar texts; results of using BiLSTM-CRF neural networks for named entity recognition on the annotated collection, including a comparison of using in-domain or out-of-domain word embeddings in this task. Although learned with much less data, performance is higher when using in-domain embeddings. When tested in 20 independent clinical texts, this model achieved better results than a model using larger out-of-domain embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lopes-etal-2019-contributions">
<titleInfo>
<title>Contributions to Clinical Named Entity Recognition in Portuguese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fábio</namePart>
<namePart type="family">Lopes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">César</namePart>
<namePart type="family">Teixeira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hugo</namePart>
<namePart type="family">Gonçalo Oliveira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Having in mind that different languages might present different challenges, this paper presents the following contributions to the area of Information Extraction from clinical text, targeting the Portuguese language: a collection of 281 clinical texts in this language, with manually-annotated named entities; word embeddings trained in a larger collection of similar texts; results of using BiLSTM-CRF neural networks for named entity recognition on the annotated collection, including a comparison of using in-domain or out-of-domain word embeddings in this task. Although learned with much less data, performance is higher when using in-domain embeddings. When tested in 20 independent clinical texts, this model achieved better results than a model using larger out-of-domain embeddings.</abstract>
<identifier type="citekey">lopes-etal-2019-contributions</identifier>
<identifier type="doi">10.18653/v1/W19-5024</identifier>
<location>
<url>https://aclanthology.org/W19-5024</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>223</start>
<end>233</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contributions to Clinical Named Entity Recognition in Portuguese
%A Lopes, Fábio
%A Teixeira, César
%A Gonçalo Oliveira, Hugo
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F lopes-etal-2019-contributions
%X Having in mind that different languages might present different challenges, this paper presents the following contributions to the area of Information Extraction from clinical text, targeting the Portuguese language: a collection of 281 clinical texts in this language, with manually-annotated named entities; word embeddings trained in a larger collection of similar texts; results of using BiLSTM-CRF neural networks for named entity recognition on the annotated collection, including a comparison of using in-domain or out-of-domain word embeddings in this task. Although learned with much less data, performance is higher when using in-domain embeddings. When tested in 20 independent clinical texts, this model achieved better results than a model using larger out-of-domain embeddings.
%R 10.18653/v1/W19-5024
%U https://aclanthology.org/W19-5024
%U https://doi.org/10.18653/v1/W19-5024
%P 223-233
Markdown (Informal)
[Contributions to Clinical Named Entity Recognition in Portuguese](https://aclanthology.org/W19-5024) (Lopes et al., BioNLP 2019)
ACL