@inproceedings{tawfik-spruit-2019-uu,
title = "{UU}{\_}{TAILS} at {MEDIQA} 2019: Learning Textual Entailment in the Medical Domain",
author = "Tawfik, Noha and
Spruit, Marco",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5053",
doi = "10.18653/v1/W19-5053",
pages = "493--499",
abstract = "This article describes the participation of the UU{\_}TAILS team in the 2019 MEDIQA challenge intended to improve domain-specific models in medical and clinical NLP. The challenge consists of 3 tasks: medical language inference (NLI), recognizing textual entailment (RQE) and question answering (QA). Our team participated in tasks 1 and 2 and our best runs achieved a performance accuracy of 0.852 and 0.584 respectively for the test sets. The models proposed for task 1 relied on BERT embeddings and different ensemble techniques. For the RQE task, we trained a traditional multilayer perceptron network based on embeddings generated by the universal sentence encoder.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tawfik-spruit-2019-uu">
<titleInfo>
<title>UU_TAILS at MEDIQA 2019: Learning Textual Entailment in the Medical Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noha</namePart>
<namePart type="family">Tawfik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Spruit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This article describes the participation of the UU_TAILS team in the 2019 MEDIQA challenge intended to improve domain-specific models in medical and clinical NLP. The challenge consists of 3 tasks: medical language inference (NLI), recognizing textual entailment (RQE) and question answering (QA). Our team participated in tasks 1 and 2 and our best runs achieved a performance accuracy of 0.852 and 0.584 respectively for the test sets. The models proposed for task 1 relied on BERT embeddings and different ensemble techniques. For the RQE task, we trained a traditional multilayer perceptron network based on embeddings generated by the universal sentence encoder.</abstract>
<identifier type="citekey">tawfik-spruit-2019-uu</identifier>
<identifier type="doi">10.18653/v1/W19-5053</identifier>
<location>
<url>https://aclanthology.org/W19-5053</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>493</start>
<end>499</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UU_TAILS at MEDIQA 2019: Learning Textual Entailment in the Medical Domain
%A Tawfik, Noha
%A Spruit, Marco
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F tawfik-spruit-2019-uu
%X This article describes the participation of the UU_TAILS team in the 2019 MEDIQA challenge intended to improve domain-specific models in medical and clinical NLP. The challenge consists of 3 tasks: medical language inference (NLI), recognizing textual entailment (RQE) and question answering (QA). Our team participated in tasks 1 and 2 and our best runs achieved a performance accuracy of 0.852 and 0.584 respectively for the test sets. The models proposed for task 1 relied on BERT embeddings and different ensemble techniques. For the RQE task, we trained a traditional multilayer perceptron network based on embeddings generated by the universal sentence encoder.
%R 10.18653/v1/W19-5053
%U https://aclanthology.org/W19-5053
%U https://doi.org/10.18653/v1/W19-5053
%P 493-499
Markdown (Informal)
[UU_TAILS at MEDIQA 2019: Learning Textual Entailment in the Medical Domain](https://aclanthology.org/W19-5053) (Tawfik & Spruit, BioNLP 2019)
ACL