@inproceedings{louvan-magnini-2019-leveraging,
title = "Leveraging Non-Conversational Tasks for Low Resource Slot Filling: Does it help?",
author = "Louvan, Samuel and
Magnini, Bernardo",
editor = "Nakamura, Satoshi and
Gasic, Milica and
Zukerman, Ingrid and
Skantze, Gabriel and
Nakano, Mikio and
Papangelis, Alexandros and
Ultes, Stefan and
Yoshino, Koichiro",
booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
month = sep,
year = "2019",
address = "Stockholm, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5911/",
doi = "10.18653/v1/W19-5911",
pages = "85--91",
abstract = "Slot filling is a core operation for utterance understanding in task-oriented dialogue systems. Slots are typically domain-specific, and adding new domains to a dialogue system involves data and time-intensive processes. A popular technique to address the problem is transfer learning, where it is assumed the availability of a large slot filling dataset for the source domain, to be used to help slot filling on the target domain, with fewer data. In this work, instead, we propose to leverage source tasks based on semantically related non-conversational resources (e.g., semantic sequence tagging datasets), as they are both cheaper to obtain and reusable to several slot filling domains. We show that using auxiliary non-conversational tasks in a multi-task learning setup consistently improves low resource slot filling performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="louvan-magnini-2019-leveraging">
<titleInfo>
<title>Leveraging Non-Conversational Tasks for Low Resource Slot Filling: Does it help?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Louvan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernardo</namePart>
<namePart type="family">Magnini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Stockholm, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Slot filling is a core operation for utterance understanding in task-oriented dialogue systems. Slots are typically domain-specific, and adding new domains to a dialogue system involves data and time-intensive processes. A popular technique to address the problem is transfer learning, where it is assumed the availability of a large slot filling dataset for the source domain, to be used to help slot filling on the target domain, with fewer data. In this work, instead, we propose to leverage source tasks based on semantically related non-conversational resources (e.g., semantic sequence tagging datasets), as they are both cheaper to obtain and reusable to several slot filling domains. We show that using auxiliary non-conversational tasks in a multi-task learning setup consistently improves low resource slot filling performance.</abstract>
<identifier type="citekey">louvan-magnini-2019-leveraging</identifier>
<identifier type="doi">10.18653/v1/W19-5911</identifier>
<location>
<url>https://aclanthology.org/W19-5911/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>85</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Non-Conversational Tasks for Low Resource Slot Filling: Does it help?
%A Louvan, Samuel
%A Magnini, Bernardo
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F louvan-magnini-2019-leveraging
%X Slot filling is a core operation for utterance understanding in task-oriented dialogue systems. Slots are typically domain-specific, and adding new domains to a dialogue system involves data and time-intensive processes. A popular technique to address the problem is transfer learning, where it is assumed the availability of a large slot filling dataset for the source domain, to be used to help slot filling on the target domain, with fewer data. In this work, instead, we propose to leverage source tasks based on semantically related non-conversational resources (e.g., semantic sequence tagging datasets), as they are both cheaper to obtain and reusable to several slot filling domains. We show that using auxiliary non-conversational tasks in a multi-task learning setup consistently improves low resource slot filling performance.
%R 10.18653/v1/W19-5911
%U https://aclanthology.org/W19-5911/
%U https://doi.org/10.18653/v1/W19-5911
%P 85-91
Markdown (Informal)
[Leveraging Non-Conversational Tasks for Low Resource Slot Filling: Does it help?](https://aclanthology.org/W19-5911/) (Louvan & Magnini, SIGDIAL 2019)
ACL