@inproceedings{tseng-etal-2019-tree,
title = "Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation",
author = "Tseng, Bo-Hsiang and
Budzianowski, Pawe{\l} and
Wu, Yen-chen and
Gasic, Milica",
editor = "Nakamura, Satoshi and
Gasic, Milica and
Zukerman, Ingrid and
Skantze, Gabriel and
Nakano, Mikio and
Papangelis, Alexandros and
Ultes, Stefan and
Yoshino, Koichiro",
booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
month = sep,
year = "2019",
address = "Stockholm, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5920/",
doi = "10.18653/v1/W19-5920",
pages = "155--164",
abstract = "Domain adaptation in natural language generation (NLG) remains challenging because of the high complexity of input semantics across domains and limited data of a target domain. This is particularly the case for dialogue systems, where we want to be able to seamlessly include new domains into the conversation. Therefore, it is crucial for generation models to share knowledge across domains for the effective adaptation from one domain to another. In this study, we exploit a tree-structured semantic encoder to capture the internal structure of complex semantic representations required for multi-domain dialogues in order to facilitate knowledge sharing across domains. In addition, a layer-wise attention mechanism between the tree encoder and the decoder is adopted to further improve the model`s capability. The automatic evaluation results show that our model outperforms previous methods in terms of the BLEU score and the slot error rate, in particular when the adaptation data is limited. In subjective evaluation, human judges tend to prefer the sentences generated by our model, rating them more highly on informativeness and naturalness than other systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tseng-etal-2019-tree">
<titleInfo>
<title>Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo-Hsiang</namePart>
<namePart type="family">Tseng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paweł</namePart>
<namePart type="family">Budzianowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yen-chen</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Stockholm, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Domain adaptation in natural language generation (NLG) remains challenging because of the high complexity of input semantics across domains and limited data of a target domain. This is particularly the case for dialogue systems, where we want to be able to seamlessly include new domains into the conversation. Therefore, it is crucial for generation models to share knowledge across domains for the effective adaptation from one domain to another. In this study, we exploit a tree-structured semantic encoder to capture the internal structure of complex semantic representations required for multi-domain dialogues in order to facilitate knowledge sharing across domains. In addition, a layer-wise attention mechanism between the tree encoder and the decoder is adopted to further improve the model‘s capability. The automatic evaluation results show that our model outperforms previous methods in terms of the BLEU score and the slot error rate, in particular when the adaptation data is limited. In subjective evaluation, human judges tend to prefer the sentences generated by our model, rating them more highly on informativeness and naturalness than other systems.</abstract>
<identifier type="citekey">tseng-etal-2019-tree</identifier>
<identifier type="doi">10.18653/v1/W19-5920</identifier>
<location>
<url>https://aclanthology.org/W19-5920/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>155</start>
<end>164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation
%A Tseng, Bo-Hsiang
%A Budzianowski, Paweł
%A Wu, Yen-chen
%A Gasic, Milica
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F tseng-etal-2019-tree
%X Domain adaptation in natural language generation (NLG) remains challenging because of the high complexity of input semantics across domains and limited data of a target domain. This is particularly the case for dialogue systems, where we want to be able to seamlessly include new domains into the conversation. Therefore, it is crucial for generation models to share knowledge across domains for the effective adaptation from one domain to another. In this study, we exploit a tree-structured semantic encoder to capture the internal structure of complex semantic representations required for multi-domain dialogues in order to facilitate knowledge sharing across domains. In addition, a layer-wise attention mechanism between the tree encoder and the decoder is adopted to further improve the model‘s capability. The automatic evaluation results show that our model outperforms previous methods in terms of the BLEU score and the slot error rate, in particular when the adaptation data is limited. In subjective evaluation, human judges tend to prefer the sentences generated by our model, rating them more highly on informativeness and naturalness than other systems.
%R 10.18653/v1/W19-5920
%U https://aclanthology.org/W19-5920/
%U https://doi.org/10.18653/v1/W19-5920
%P 155-164
Markdown (Informal)
[Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation](https://aclanthology.org/W19-5920/) (Tseng et al., SIGDIAL 2019)
ACL