@inproceedings{rasmussen-etal-2019-cross,
title = "Cross-Domain Sentiment Classification using Vector Embedded Domain Representations",
author = "Rasmussen, Nicolaj Filrup and
Jensen, Kristian N{\o}rgaard and
Placenti, Marco and
Wang, Thai",
editor = {Nivre, Joakim and
Derczynski, Leon and
Ginter, Filip and
Lindi, Bj{\o}rn and
Oepen, Stephan and
S{\o}gaard, Anders and
Tidemann, J{\"o}rg},
booktitle = "Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing",
month = sep,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6206/",
pages = "48--57",
abstract = "Due to the differences between reviews in different product categories, creating a general model for cross-domain sentiment classification can be a difficult task. This paper proposes an architecture that incorporates domain knowledge into a neural sentiment classification model. In addition to providing a cross-domain model, this also provides a quantifiable representation of the domains as numeric vectors. We show that it is possible to cluster the domain vectors and provide qualitative insights into the inter-domain relations. We also a) present a new data set for sentiment classification that includes a domain parameter and preprocessed data points, and b) perform an ablation study in order to determine whether some word groups impact performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rasmussen-etal-2019-cross">
<titleInfo>
<title>Cross-Domain Sentiment Classification using Vector Embedded Domain Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicolaj</namePart>
<namePart type="given">Filrup</namePart>
<namePart type="family">Rasmussen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristian</namePart>
<namePart type="given">Nørgaard</namePart>
<namePart type="family">Jensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Placenti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thai</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joakim</namePart>
<namePart type="family">Nivre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Ginter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bjørn</namePart>
<namePart type="family">Lindi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tidemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Due to the differences between reviews in different product categories, creating a general model for cross-domain sentiment classification can be a difficult task. This paper proposes an architecture that incorporates domain knowledge into a neural sentiment classification model. In addition to providing a cross-domain model, this also provides a quantifiable representation of the domains as numeric vectors. We show that it is possible to cluster the domain vectors and provide qualitative insights into the inter-domain relations. We also a) present a new data set for sentiment classification that includes a domain parameter and preprocessed data points, and b) perform an ablation study in order to determine whether some word groups impact performance.</abstract>
<identifier type="citekey">rasmussen-etal-2019-cross</identifier>
<location>
<url>https://aclanthology.org/W19-6206/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>48</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Domain Sentiment Classification using Vector Embedded Domain Representations
%A Rasmussen, Nicolaj Filrup
%A Jensen, Kristian Nørgaard
%A Placenti, Marco
%A Wang, Thai
%Y Nivre, Joakim
%Y Derczynski, Leon
%Y Ginter, Filip
%Y Lindi, Bjørn
%Y Oepen, Stephan
%Y Søgaard, Anders
%Y Tidemann, Jörg
%S Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing
%D 2019
%8 September
%I Linköping University Electronic Press
%C Turku, Finland
%F rasmussen-etal-2019-cross
%X Due to the differences between reviews in different product categories, creating a general model for cross-domain sentiment classification can be a difficult task. This paper proposes an architecture that incorporates domain knowledge into a neural sentiment classification model. In addition to providing a cross-domain model, this also provides a quantifiable representation of the domains as numeric vectors. We show that it is possible to cluster the domain vectors and provide qualitative insights into the inter-domain relations. We also a) present a new data set for sentiment classification that includes a domain parameter and preprocessed data points, and b) perform an ablation study in order to determine whether some word groups impact performance.
%U https://aclanthology.org/W19-6206/
%P 48-57
Markdown (Informal)
[Cross-Domain Sentiment Classification using Vector Embedded Domain Representations](https://aclanthology.org/W19-6206/) (Rasmussen et al., NoDaLiDa 2019)
ACL