@inproceedings{damaschk-etal-2019-multiclass,
title = "Multiclass Text Classification on Unbalanced, Sparse and Noisy Data",
author = {D{\"o}nicke, Tillmann and
Damaschk, Matthias and
Lux, Florian},
editor = {Nivre, Joakim and
Derczynski, Leon and
Ginter, Filip and
Lindi, Bj{\o}rn and
Oepen, Stephan and
S{\o}gaard, Anders and
Tidemann, J{\"o}rg},
booktitle = "Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing",
month = sep,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6207/",
pages = "58--65",
abstract = "This paper discusses methods to improve the performance of text classification on data that is difficult to classify due to a large number of unbalanced classes with noisy examples. A variety of features are tested, in combination with three different neural-network-based methods with increasing complexity. The classifiers are applied to a songtext{--}artist dataset which is large, unbalanced and noisy. We come to the conclusion that substantial improvement can be obtained by removing unbalancedness and sparsity from the data. This fulfils a classification task unsatisfactorily{---}however, with contemporary methods, it is a practical step towards fairly satisfactory results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="damaschk-etal-2019-multiclass">
<titleInfo>
<title>Multiclass Text Classification on Unbalanced, Sparse and Noisy Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tillmann</namePart>
<namePart type="family">Dönicke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Damaschk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Lux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joakim</namePart>
<namePart type="family">Nivre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Ginter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bjørn</namePart>
<namePart type="family">Lindi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tidemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper discusses methods to improve the performance of text classification on data that is difficult to classify due to a large number of unbalanced classes with noisy examples. A variety of features are tested, in combination with three different neural-network-based methods with increasing complexity. The classifiers are applied to a songtext–artist dataset which is large, unbalanced and noisy. We come to the conclusion that substantial improvement can be obtained by removing unbalancedness and sparsity from the data. This fulfils a classification task unsatisfactorily—however, with contemporary methods, it is a practical step towards fairly satisfactory results.</abstract>
<identifier type="citekey">damaschk-etal-2019-multiclass</identifier>
<location>
<url>https://aclanthology.org/W19-6207/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>58</start>
<end>65</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multiclass Text Classification on Unbalanced, Sparse and Noisy Data
%A Dönicke, Tillmann
%A Damaschk, Matthias
%A Lux, Florian
%Y Nivre, Joakim
%Y Derczynski, Leon
%Y Ginter, Filip
%Y Lindi, Bjørn
%Y Oepen, Stephan
%Y Søgaard, Anders
%Y Tidemann, Jörg
%S Proceedings of the First NLPL Workshop on Deep Learning for Natural Language Processing
%D 2019
%8 September
%I Linköping University Electronic Press
%C Turku, Finland
%F damaschk-etal-2019-multiclass
%X This paper discusses methods to improve the performance of text classification on data that is difficult to classify due to a large number of unbalanced classes with noisy examples. A variety of features are tested, in combination with three different neural-network-based methods with increasing complexity. The classifiers are applied to a songtext–artist dataset which is large, unbalanced and noisy. We come to the conclusion that substantial improvement can be obtained by removing unbalancedness and sparsity from the data. This fulfils a classification task unsatisfactorily—however, with contemporary methods, it is a practical step towards fairly satisfactory results.
%U https://aclanthology.org/W19-6207/
%P 58-65
Markdown (Informal)
[Multiclass Text Classification on Unbalanced, Sparse and Noisy Data](https://aclanthology.org/W19-6207/) (Dönicke et al., NoDaLiDa 2019)
ACL