@inproceedings{briggs-harner-2019-generating,
title = "Generating Quantified Referring Expressions with Perceptual Cost Pruning",
author = "Briggs, Gordon and
Harner, Hillary",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "{--}" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8602",
doi = "10.18653/v1/W19-8602",
pages = "11--18",
abstract = "We model the production of quantified referring expressions (QREs) that identify collections of visual items. To address this task, we propose a method of perceptual cost pruning, which consists of two steps: (1) determine what subset of quantity information can be perceived given a time limit t, and (2) apply a preference order based REG algorithm (e.g., the Incremental Algorithm) to this reduced set of information. We demonstrate that this method successfully improves the human-likeness of the IA in the QRE generation task and successfully models human-generated language in most cases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="briggs-harner-2019-generating">
<titleInfo>
<title>Generating Quantified Referring Expressions with Perceptual Cost Pruning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gordon</namePart>
<namePart type="family">Briggs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hillary</namePart>
<namePart type="family">Harner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We model the production of quantified referring expressions (QREs) that identify collections of visual items. To address this task, we propose a method of perceptual cost pruning, which consists of two steps: (1) determine what subset of quantity information can be perceived given a time limit t, and (2) apply a preference order based REG algorithm (e.g., the Incremental Algorithm) to this reduced set of information. We demonstrate that this method successfully improves the human-likeness of the IA in the QRE generation task and successfully models human-generated language in most cases.</abstract>
<identifier type="citekey">briggs-harner-2019-generating</identifier>
<identifier type="doi">10.18653/v1/W19-8602</identifier>
<location>
<url>https://aclanthology.org/W19-8602</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>11</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Quantified Referring Expressions with Perceptual Cost Pruning
%A Briggs, Gordon
%A Harner, Hillary
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F briggs-harner-2019-generating
%X We model the production of quantified referring expressions (QREs) that identify collections of visual items. To address this task, we propose a method of perceptual cost pruning, which consists of two steps: (1) determine what subset of quantity information can be perceived given a time limit t, and (2) apply a preference order based REG algorithm (e.g., the Incremental Algorithm) to this reduced set of information. We demonstrate that this method successfully improves the human-likeness of the IA in the QRE generation task and successfully models human-generated language in most cases.
%R 10.18653/v1/W19-8602
%U https://aclanthology.org/W19-8602
%U https://doi.org/10.18653/v1/W19-8602
%P 11-18
Markdown (Informal)
[Generating Quantified Referring Expressions with Perceptual Cost Pruning](https://aclanthology.org/W19-8602) (Briggs & Harner, INLG 2019)
ACL