@inproceedings{yi-etal-2019-towards,
title = "Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators",
author = "Yi, Sanghyun and
Goel, Rahul and
Khatri, Chandra and
Cervone, Alessandra and
Chung, Tagyoung and
Hedayatnia, Behnam and
Venkatesh, Anu and
Gabriel, Raefer and
Hakkani-Tur, Dilek",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "–" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8608/",
doi = "10.18653/v1/W19-8608",
pages = "65--75",
abstract = "Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood (MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., {\textquotedblleft}Maybe, I don`t know.{\textquotedblright} Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yi-etal-2019-towards">
<titleInfo>
<title>Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sanghyun</namePart>
<namePart type="family">Yi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rahul</namePart>
<namePart type="family">Goel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chandra</namePart>
<namePart type="family">Khatri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandra</namePart>
<namePart type="family">Cervone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tagyoung</namePart>
<namePart type="family">Chung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behnam</namePart>
<namePart type="family">Hedayatnia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anu</namePart>
<namePart type="family">Venkatesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raefer</namePart>
<namePart type="family">Gabriel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood (MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., “Maybe, I don‘t know.” Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation.</abstract>
<identifier type="citekey">yi-etal-2019-towards</identifier>
<identifier type="doi">10.18653/v1/W19-8608</identifier>
<location>
<url>https://aclanthology.org/W19-8608/</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>65</start>
<end>75</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators
%A Yi, Sanghyun
%A Goel, Rahul
%A Khatri, Chandra
%A Cervone, Alessandra
%A Chung, Tagyoung
%A Hedayatnia, Behnam
%A Venkatesh, Anu
%A Gabriel, Raefer
%A Hakkani-Tur, Dilek
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F yi-etal-2019-towards
%X Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood (MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., “Maybe, I don‘t know.” Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation.
%R 10.18653/v1/W19-8608
%U https://aclanthology.org/W19-8608/
%U https://doi.org/10.18653/v1/W19-8608
%P 65-75
Markdown (Informal)
[Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators](https://aclanthology.org/W19-8608/) (Yi et al., INLG 2019)
ACL
- Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessandra Cervone, Tagyoung Chung, Behnam Hedayatnia, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tur. 2019. Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators. In Proceedings of the 12th International Conference on Natural Language Generation, pages 65–75, Tokyo, Japan. Association for Computational Linguistics.