@inproceedings{chan-fan-2019-bert,
title = "{BERT} for Question Generation",
author = "Chan, Ying-Hong and
Fan, Yao-Chung",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "–" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8624/",
doi = "10.18653/v1/W19-8624",
pages = "173--177",
abstract = "In this study, we investigate the employment of the pre-trained BERT language model to tackle question generation tasks. We introduce two neural architectures built on top of BERT for question generation tasks. The first one is a straightforward BERT employment, which reveals the defects of directly using BERT for text generation. And, the second one remedies the first one by restructuring the BERT employment into a sequential manner for taking information from previous decoded results. Our models are trained and evaluated on the question-answering dataset SQuAD. Experiment results show that our best model yields state-of-the-art performance which advances the BLEU4 score of existing best models from 16.85 to 18.91."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chan-fan-2019-bert">
<titleInfo>
<title>BERT for Question Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ying-Hong</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao-Chung</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this study, we investigate the employment of the pre-trained BERT language model to tackle question generation tasks. We introduce two neural architectures built on top of BERT for question generation tasks. The first one is a straightforward BERT employment, which reveals the defects of directly using BERT for text generation. And, the second one remedies the first one by restructuring the BERT employment into a sequential manner for taking information from previous decoded results. Our models are trained and evaluated on the question-answering dataset SQuAD. Experiment results show that our best model yields state-of-the-art performance which advances the BLEU4 score of existing best models from 16.85 to 18.91.</abstract>
<identifier type="citekey">chan-fan-2019-bert</identifier>
<identifier type="doi">10.18653/v1/W19-8624</identifier>
<location>
<url>https://aclanthology.org/W19-8624/</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>173</start>
<end>177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BERT for Question Generation
%A Chan, Ying-Hong
%A Fan, Yao-Chung
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F chan-fan-2019-bert
%X In this study, we investigate the employment of the pre-trained BERT language model to tackle question generation tasks. We introduce two neural architectures built on top of BERT for question generation tasks. The first one is a straightforward BERT employment, which reveals the defects of directly using BERT for text generation. And, the second one remedies the first one by restructuring the BERT employment into a sequential manner for taking information from previous decoded results. Our models are trained and evaluated on the question-answering dataset SQuAD. Experiment results show that our best model yields state-of-the-art performance which advances the BLEU4 score of existing best models from 16.85 to 18.91.
%R 10.18653/v1/W19-8624
%U https://aclanthology.org/W19-8624/
%U https://doi.org/10.18653/v1/W19-8624
%P 173-177
Markdown (Informal)
[BERT for Question Generation](https://aclanthology.org/W19-8624/) (Chan & Fan, INLG 2019)
ACL
- Ying-Hong Chan and Yao-Chung Fan. 2019. BERT for Question Generation. In Proceedings of the 12th International Conference on Natural Language Generation, pages 173–177, Tokyo, Japan. Association for Computational Linguistics.