@inproceedings{moryossef-etal-2019-improving,
title = "Improving Quality and Efficiency in Plan-based Neural Data-to-text Generation",
author = "Moryossef, Amit and
Goldberg, Yoav and
Dagan, Ido",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "{--}" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8645",
doi = "10.18653/v1/W19-8645",
pages = "377--382",
abstract = "We follow the step-by-step approach to neural data-to-text generation proposed by Moryossef et al (2019), in which the generation process is divided into a text planning stage followed by a plan realization stage. We suggest four extensions to that framework: (1) we introduce a trainable neural planning component that can generate effective plans several orders of magnitude faster than the original planner; (2) we incorporate typing hints that improve the model{'}s ability to deal with unseen relations and entities; (3) we introduce a verification-by-reranking stage that substantially improves the faithfulness of the resulting texts; (4) we incorporate a simple but effective referring expression generation module. These extensions result in a generation process that is faster, more fluent, and more accurate.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moryossef-etal-2019-improving">
<titleInfo>
<title>Improving Quality and Efficiency in Plan-based Neural Data-to-text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amit</namePart>
<namePart type="family">Moryossef</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We follow the step-by-step approach to neural data-to-text generation proposed by Moryossef et al (2019), in which the generation process is divided into a text planning stage followed by a plan realization stage. We suggest four extensions to that framework: (1) we introduce a trainable neural planning component that can generate effective plans several orders of magnitude faster than the original planner; (2) we incorporate typing hints that improve the model’s ability to deal with unseen relations and entities; (3) we introduce a verification-by-reranking stage that substantially improves the faithfulness of the resulting texts; (4) we incorporate a simple but effective referring expression generation module. These extensions result in a generation process that is faster, more fluent, and more accurate.</abstract>
<identifier type="citekey">moryossef-etal-2019-improving</identifier>
<identifier type="doi">10.18653/v1/W19-8645</identifier>
<location>
<url>https://aclanthology.org/W19-8645</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>377</start>
<end>382</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Quality and Efficiency in Plan-based Neural Data-to-text Generation
%A Moryossef, Amit
%A Goldberg, Yoav
%A Dagan, Ido
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F moryossef-etal-2019-improving
%X We follow the step-by-step approach to neural data-to-text generation proposed by Moryossef et al (2019), in which the generation process is divided into a text planning stage followed by a plan realization stage. We suggest four extensions to that framework: (1) we introduce a trainable neural planning component that can generate effective plans several orders of magnitude faster than the original planner; (2) we incorporate typing hints that improve the model’s ability to deal with unseen relations and entities; (3) we introduce a verification-by-reranking stage that substantially improves the faithfulness of the resulting texts; (4) we incorporate a simple but effective referring expression generation module. These extensions result in a generation process that is faster, more fluent, and more accurate.
%R 10.18653/v1/W19-8645
%U https://aclanthology.org/W19-8645
%U https://doi.org/10.18653/v1/W19-8645
%P 377-382
Markdown (Informal)
[Improving Quality and Efficiency in Plan-based Neural Data-to-text Generation](https://aclanthology.org/W19-8645) (Moryossef et al., INLG 2019)
ACL