@inproceedings{gialitsis-etal-2019-topic,
    title = "A topic-based sentence representation for extractive text summarization",
    author = "Gialitsis, Nikolaos  and
      Pittaras, Nikiforos  and
      Stamatopoulos, Panagiotis",
    editor = "Giannakopoulos, George",
    booktitle = "Proceedings of the Workshop MultiLing 2019: Summarization Across Languages, Genres and Sources",
    month = sep,
    year = "2019",
    address = "Varna, Bulgaria",
    publisher = "INCOMA Ltd.",
    url = "https://aclanthology.org/W19-8905/",
    doi = "10.26615/978-954-452-058-8_005",
    pages = "26--34",
    abstract = "In this study, we examine the effect of probabilistic topic model-based word representations, on sentence-based extractive summarization. We formulate the task of summary extraction as a binary classification problem, and we test a variety of machine learning algorithms, exploring a range of different settings. An wide experimental evaluation on the MultiLing 2015 MSS dataset illustrates that topic-based representations can prove beneficial to the extractive summarization process in terms of F1, ROUGE-L and ROUGE-W scores, compared to a TF-IDF baseline, with QDA-based analysis providing the best results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gialitsis-etal-2019-topic">
    <titleInfo>
        <title>A topic-based sentence representation for extractive text summarization</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Nikolaos</namePart>
        <namePart type="family">Gialitsis</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nikiforos</namePart>
        <namePart type="family">Pittaras</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Panagiotis</namePart>
        <namePart type="family">Stamatopoulos</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop MultiLing 2019: Summarization Across Languages, Genres and Sources</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">George</namePart>
            <namePart type="family">Giannakopoulos</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>INCOMA Ltd.</publisher>
            <place>
                <placeTerm type="text">Varna, Bulgaria</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this study, we examine the effect of probabilistic topic model-based word representations, on sentence-based extractive summarization. We formulate the task of summary extraction as a binary classification problem, and we test a variety of machine learning algorithms, exploring a range of different settings. An wide experimental evaluation on the MultiLing 2015 MSS dataset illustrates that topic-based representations can prove beneficial to the extractive summarization process in terms of F1, ROUGE-L and ROUGE-W scores, compared to a TF-IDF baseline, with QDA-based analysis providing the best results.</abstract>
    <identifier type="citekey">gialitsis-etal-2019-topic</identifier>
    <identifier type="doi">10.26615/978-954-452-058-8_005</identifier>
    <location>
        <url>https://aclanthology.org/W19-8905/</url>
    </location>
    <part>
        <date>2019-09</date>
        <extent unit="page">
            <start>26</start>
            <end>34</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A topic-based sentence representation for extractive text summarization
%A Gialitsis, Nikolaos
%A Pittaras, Nikiforos
%A Stamatopoulos, Panagiotis
%Y Giannakopoulos, George
%S Proceedings of the Workshop MultiLing 2019: Summarization Across Languages, Genres and Sources
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F gialitsis-etal-2019-topic
%X In this study, we examine the effect of probabilistic topic model-based word representations, on sentence-based extractive summarization. We formulate the task of summary extraction as a binary classification problem, and we test a variety of machine learning algorithms, exploring a range of different settings. An wide experimental evaluation on the MultiLing 2015 MSS dataset illustrates that topic-based representations can prove beneficial to the extractive summarization process in terms of F1, ROUGE-L and ROUGE-W scores, compared to a TF-IDF baseline, with QDA-based analysis providing the best results.
%R 10.26615/978-954-452-058-8_005
%U https://aclanthology.org/W19-8905/
%U https://doi.org/10.26615/978-954-452-058-8_005
%P 26-34
Markdown (Informal)
[A topic-based sentence representation for extractive text summarization](https://aclanthology.org/W19-8905/) (Gialitsis et al., RANLP 2019)
ACL