@inproceedings{gialitsis-etal-2019-topic,
title = "A topic-based sentence representation for extractive text summarization",
author = "Gialitsis, Nikolaos and
Pittaras, Nikiforos and
Stamatopoulos, Panagiotis",
editor = "Giannakopoulos, George",
booktitle = "Proceedings of the Workshop MultiLing 2019: Summarization Across Languages, Genres and Sources",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/W19-8905/",
doi = "10.26615/978-954-452-058-8_005",
pages = "26--34",
abstract = "In this study, we examine the effect of probabilistic topic model-based word representations, on sentence-based extractive summarization. We formulate the task of summary extraction as a binary classification problem, and we test a variety of machine learning algorithms, exploring a range of different settings. An wide experimental evaluation on the MultiLing 2015 MSS dataset illustrates that topic-based representations can prove beneficial to the extractive summarization process in terms of F1, ROUGE-L and ROUGE-W scores, compared to a TF-IDF baseline, with QDA-based analysis providing the best results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gialitsis-etal-2019-topic">
<titleInfo>
<title>A topic-based sentence representation for extractive text summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Gialitsis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikiforos</namePart>
<namePart type="family">Pittaras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Panagiotis</namePart>
<namePart type="family">Stamatopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop MultiLing 2019: Summarization Across Languages, Genres and Sources</title>
</titleInfo>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Giannakopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this study, we examine the effect of probabilistic topic model-based word representations, on sentence-based extractive summarization. We formulate the task of summary extraction as a binary classification problem, and we test a variety of machine learning algorithms, exploring a range of different settings. An wide experimental evaluation on the MultiLing 2015 MSS dataset illustrates that topic-based representations can prove beneficial to the extractive summarization process in terms of F1, ROUGE-L and ROUGE-W scores, compared to a TF-IDF baseline, with QDA-based analysis providing the best results.</abstract>
<identifier type="citekey">gialitsis-etal-2019-topic</identifier>
<identifier type="doi">10.26615/978-954-452-058-8_005</identifier>
<location>
<url>https://aclanthology.org/W19-8905/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>26</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A topic-based sentence representation for extractive text summarization
%A Gialitsis, Nikolaos
%A Pittaras, Nikiforos
%A Stamatopoulos, Panagiotis
%Y Giannakopoulos, George
%S Proceedings of the Workshop MultiLing 2019: Summarization Across Languages, Genres and Sources
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F gialitsis-etal-2019-topic
%X In this study, we examine the effect of probabilistic topic model-based word representations, on sentence-based extractive summarization. We formulate the task of summary extraction as a binary classification problem, and we test a variety of machine learning algorithms, exploring a range of different settings. An wide experimental evaluation on the MultiLing 2015 MSS dataset illustrates that topic-based representations can prove beneficial to the extractive summarization process in terms of F1, ROUGE-L and ROUGE-W scores, compared to a TF-IDF baseline, with QDA-based analysis providing the best results.
%R 10.26615/978-954-452-058-8_005
%U https://aclanthology.org/W19-8905/
%U https://doi.org/10.26615/978-954-452-058-8_005
%P 26-34
Markdown (Informal)
[A topic-based sentence representation for extractive text summarization](https://aclanthology.org/W19-8905/) (Gialitsis et al., RANLP 2019)
ACL