Transcripts of teaching episodes can be effective tools to understand discourse patterns in classroom instruction. According to most educational experts, sustained classroom discourse is a critical component of equitable, engaging, and rich learning environments for students. This paper describes the TalkMoves dataset, composed of 567 human-annotated K-12 mathematics lesson transcripts (including entire lessons or portions of lessons) derived from video recordings. The set of transcripts primarily includes in-person lessons with whole-class discussions and/or small group work, as well as some online lessons. All of the transcripts are human-transcribed, segmented by the speaker (teacher or student), and annotated at the sentence level for ten discursive moves based on accountable talk theory. In addition, the transcripts include utterance-level information in the form of dialogue act labels based on the Switchboard Dialog Act Corpus. The dataset can be used by educators, policymakers, and researchers to understand the nature of teacher and student discourse in K-12 math classrooms. Portions of this dataset have been used to develop the TalkMoves application, which provides teachers with automated, immediate, and actionable feedback about their mathematics instruction.
“Talk moves” are specific discursive strategies used by teachers and students to facilitate conversations in which students share their thinking, and actively consider the ideas of others, and engage in rich discussions. Experts in instructional practices often rely on cues to identify and document these strategies, for example by annotating classroom transcripts. Prior efforts to develop automated systems to classify teacher talk moves using transformers achieved a performance of 76.32% F1. In this paper, we investigate the feasibility of using enriched contextual cues to improve model performance. We applied state-of-the-art deep learning approaches for Natural Language Processing (NLP), including Robustly optimized bidirectional encoder representations from transformers (Roberta) with a special input representation that supports previous and subsequent utterances as context for talk moves classification. We worked with the publically available TalkMoves dataset, which contains utterances sourced from real-world classroom sessions (human- transcribed and annotated). Through a series of experimentations, we found that a combination of previous and subsequent utterances improved the transformers’ ability to differentiate talk moves (by 2.6% F1). These results constitute a new state of the art over previously published results and provide actionable insights to those in the broader NLP community who are working to develop similar transformer-based classification models.