Abhinav Appidi


2023

pdf bib
Event Annotation and Detection in Kannada-English Code-Mixed Social Media Data
Sumukh S | Abhinav Appidi | Manish Shrivastava
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Code-mixing (CM) is a frequently observed phenomenon on social media platforms in multilingual societies such as India. While the increase in code-mixed content on these platforms provides good amount of data for studying various aspects of code-mixing, the lack of automated text analysis tools makes such studies difficult. To overcome the same, tools such as language identifiers, Parts-of-Speech (POS) taggers and Named Entity Recognition (NER) for analysing code-mixed data have been developed. One such important tool is Event Detection, an important information retrieval task which can be used to identify critical facts occurring in the vast streams of unstructured text data available. While event detection from text is a hard problem on its own, social media data adds to it with its informal nature, and code-mixed (Kannada-English) data further complicates the problem due to its word-level mixing, lack of structure and incomplete information. In this work, we have tried to address this problem. We have proposed guidelines for the annotation of events in Kannada-English CM data and provided some baselines for the same with careful feature selection.

2022

pdf bib
Named Entity Recognition for Code-Mixed Kannada-English Social Media Data
Poojitha Nandigam | Abhinav Appidi | Manish Shrivastava
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Named Entity Recognition (NER) is a critical task in the field of Natural Language Processing (NLP) and is also a sub-task of Information Extraction. There has been a significant amount of work done in entity extraction and Named Entity Recognition for resource-rich languages. Entity extraction from code-mixed social media data like tweets from twitter complicates the problem due to its unstructured, informal, and incomplete information available in tweets. Here, we present work on NER in Kannada-English code-mixed social media corpus with corresponding named entity tags referring to Organisation (Org), Person (Pers), and Location (Loc). We experimented with machine learning classification models like Conditional Random Fields (CRF), Bi-LSTM, and Bi-LSTM-CRF models on our corpus.