Abulimiti Maimaitituoheti


2022

pdf bib
ABLIMET @LT-EDI-ACL2022: A Roberta based Approach for Homophobia/Transphobia Detection in Social Media
Abulimiti Maimaitituoheti
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

This paper describes our system that participated in LT-EDI-ACL2022- Homophobia/Transphobia Detection in Social Media. Sexual minorities face a lot of unfair treatment and discrimination in our world. This creates enormous stress and many psychological problems for sexual minorities. There is a lot of hate speech on the internet, and Homophobia/Transphobia is the one against sexual minorities. Identifying and processing Homophobia/ Transphobia through natural language processing technology can improve the efficiency of processing Homophobia/ Transphobia, and can quickly screen out Homophobia/Transphobia on the Internet. The organizer of LT-EDI-ACL2022- Homophobia/Transphobia Detection in Social Media constructs a Homophobia/ Transphobia detection dataset based on YouTube comments for English and Tamil. We use a Roberta -based approach to conduct Homophobia/ Transphobia detection experiments on the dataset of the competition, and get better results.

pdf bib
A Prompt Based Approach for Euphemism Detection
Abulimiti Maimaitituoheti | Yang Yong | Fan Xiaochao
Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)

Euphemism is an indirect way to express sensitive topics. People can comfortably communicate with each other about sensitive topics or taboos by using euphemisms. The Euphemism Detection Shared Task in the Third Workshop on Figurative Language Processing co-located with EMNLP 2022 provided a euphemism detection dataset that was divided into the train set and the test set. We made euphemism detection experiments by prompt tuning pre-trained language models on the dataset. We used RoBERTa as the pre-trained language model and created suitable templates and verbalizers for the euphemism detection task. Our approach achieved the third-best score in the euphemism detection shared task. This paper describes our model participating in the task.