2024
pdf
bib
abs
A Workflow for HTR-Postprocessing, Labeling and Classifying Diachronic and Regional Variation in Pre-Modern Slavic Texts
Piroska Lendvai
|
Maarten van Gompel
|
Anna Jouravel
|
Elena Renje
|
Uwe Reichel
|
Achim Rabus
|
Eckhart Arnold
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
We describe ongoing work for developing a workflow for the applied use case of classifying diachronic and regional language variation in Pre-Modern Slavic texts. The data were obtained via handwritten text recognition (HTR) on medieval manuscripts and printings and partly by manual transcription. Our goal is to develop a workflow for such historical language data, covering HTR-postprocessing, annotating and classifying the digitized texts. We test and adapt existing language resources to fit the pipeline with low-barrier tooling, accessible for Humanists with limited experience in research data infrastructures, computational analysis or advanced methods of natural language processing (NLP). The workflow starts by addressing ground truth (GT) data creation for diagnosing and correcting HTR errors via string metrics and data-driven methods. On GT and on HTR data, we subsequently show classification results using transfer learning on sentence-level text snippets. Next, we report on our token-level data labeling efforts. Each step of the workflow is complemented with describing current limitations and our corresponding work in progress.
2023
pdf
bib
abs
Domain-Adapting BERT for Attributing Manuscript, Century and Region in Pre-Modern Slavic Texts
Piroska Lendvai
|
Uwe Reichel
|
Anna Jouravel
|
Achim Rabus
|
Elena Renje
Proceedings of the 4th Workshop on Computational Approaches to Historical Language Change
Our study presents a stratified dataset compiled from six different Slavic bodies of text, for cross-linguistic and diachronic analyses of Slavic Pre-Modern language variants. We demonstrate unsupervised domain adaptation and supervised finetuning of BERT on these low-resource, historical Slavic variants, for the purposes of provenance attribution in terms of three downstream tasks: manuscript, century and copying region classification.The data compilation aims to capture diachronic as well as regional language variation and change: the texts were written in the course of roughly a millennium, incorporating language variants from the High Middle Ages to the Early Modern Period, and originate from a variety of geographic regions. Mechanisms of language change in relatively small portions of such data have been inspected, analyzed and typologized by Slavists manually; our contribution aims to investigate the extent to which the BERT transformer architecture and pretrained models can benefit this process. Using these datasets for domain adaptation, we could attribute temporal, geographical and manuscript origin on the level of text snippets with high F-scores. We also conducted a qualitative analysis of the models’ misclassifications.
2017
pdf
bib
abs
Multi-source morphosyntactic tagging for spoken Rusyn
Yves Scherrer
|
Achim Rabus
Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)
This paper deals with the development of morphosyntactic taggers for spoken varieties of the Slavic minority language Rusyn. As neither annotated corpora nor parallel corpora are electronically available for Rusyn, we propose to combine existing resources from the etymologically close Slavic languages Russian, Ukrainian, Slovak, and Polish and adapt them to Rusyn. Using MarMoT as tagging toolkit, we show that a tagger trained on a balanced set of the four source languages outperforms single language taggers by about 9%, and that additional automatically induced morphosyntactic lexicons lead to further improvements. The best observed accuracies for Rusyn are 82.4% for part-of-speech tagging and 75.5% for full morphological tagging.
pdf
bib
abs
Lexicon Induction for Spoken Rusyn – Challenges and Results
Achim Rabus
|
Yves Scherrer
Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing
This paper reports on challenges and results in developing NLP resources for spoken Rusyn. Being a Slavic minority language, Rusyn does not have any resources to make use of. We propose to build a morphosyntactic dictionary for Rusyn, combining existing resources from the etymologically close Slavic languages Russian, Ukrainian, Slovak, and Polish. We adapt these resources to Rusyn by using vowel-sensitive Levenshtein distance, hand-written language-specific transformation rules, and combinations of the two. Compared to an exact match baseline, we increase the coverage of the resulting morphological dictionary by up to 77.4% relative (42.9% absolute), which results in a tagging recall increased by 11.6% relative (9.1% absolute). Our research confirms and expands the results of previous studies showing the efficiency of using NLP resources from neighboring languages for low-resourced languages.