Ahmed Y. Tawfik


2022

pdf bib
Domain Specific Sub-network for Multi-Domain Neural Machine Translation
Amr Hendy | Mohamed Abdelghaffar | Mohamed Afify | Ahmed Y. Tawfik
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

This paper presents Domain-Specific Sub-network (DoSS). It uses a set of masks obtained through pruning to define a sub-network for each domain and finetunes the sub-network parameters on domain data. This performs very closely and drastically reduces the number of parameters compared to finetuning the whole network on each domain. Also a method to make masks unique per domain is proposed and shown to greatly improve the generalization to unseen domains. In our experiments on German to English machine translation the proposed method outperforms the strong baseline of continue training on multi-domain (medical, tech and religion) data by 1.47 BLEU points. Also continue training DoSS on new domain (legal) outperforms the multi-domain (medical, tech, religion, legal) baseline by 1.52 BLEU points.

2021

pdf bib
Ensembling of Distilled Models from Multi-task Teachers for Constrained Resource Language Pairs
Amr Hendy | Esraa A. Gad | Mohamed Abdelghaffar | Jailan S. ElMosalami | Mohamed Afify | Ahmed Y. Tawfik | Hany Hassan Awadalla
Proceedings of the Sixth Conference on Machine Translation

This paper describes the Microsoft Egypt Development Center (EgDC) submission to the constrained track of WMT21 shared news translation task. We focus on the three relatively low resource language pairs Bengali ↔ Hindi, English ↔ Hausa and Xhosa ↔ Zulu. To overcome the limitation of relatively low parallel data we train a multilingual model using a multitask objective employing both parallel and monolingual data. In addition, we augment the data using back translation. We also train a bilingual model incorporating back translation and knowledge distillation then combine the two models using sequence-to-sequence mapping. We see around 70% relative gain in BLEU point for En ↔ Ha and around 25% relative improvements for Bn ↔ Hi and Xh ↔ Zu compared to bilingual baselines.

2017

pdf bib
Synthetic Data for Neural Machine Translation of Spoken-Dialects
Hany Hassan | Mostafa Elaraby | Ahmed Y. Tawfik
Proceedings of the 14th International Conference on Spoken Language Translation

In this paper, we introduce a novel approach to generate synthetic data for training Neural Machine Translation systems. The proposed approach supports language variants and dialects with very limited parallel training data. This is achieved using a seed data to project words from a closely-related resource-rich language to an under-resourced language variant via word embedding representations. The proposed approach is based on localized embedding projection of distributed representations which utilizes monolingual embeddings and approximate nearest neighbors queries to transform parallel data across language variants. Our approach is language independent and can be used to generate data for any variant of the source language such as slang or spoken dialect or even for a different language that is related to the source language. We report experimental results on Levantine to English translation using Neural Machine Translation. We show that the synthetic data can provide significant improvements over a very large scale system by more than 2.8 Bleu points and it can be used to provide a reliable translation system for a spoken dialect which does not have sufficient parallel data.