Alaeddin Gürel
2022
Extended Multilingual Protest News Detection - Shared Task 1, CASE 2021 and 2022
Ali Hürriyetoğlu
|
Osman Mutlu
|
Fırat Duruşan
|
Onur Uca
|
Alaeddin Gürel
|
Benjamin J. Radford
|
Yaoyao Dai
|
Hansi Hettiarachchi
|
Niklas Stoehr
|
Tadashi Nomoto
|
Milena Slavcheva
|
Francielle Vargas
|
Aaqib Javid
|
Fatih Beyhan
|
Erdem Yörük
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)
We report results of the CASE 2022 Shared Task 1 on Multilingual Protest Event Detection. This task is a continuation of CASE 2021 that consists of four subtasks that are i) document classification, ii) sentence classification, iii) event sentence coreference identification, and iv) event extraction. The CASE 2022 extension consists of expanding the test data with more data in previously available languages, namely, English, Hindi, Portuguese, and Spanish, and adding new test data in Mandarin, Turkish, and Urdu for Sub-task 1, document classification. The training data from CASE 2021 in English, Portuguese and Spanish were utilized. Therefore, predicting document labels in Hindi, Mandarin, Turkish, and Urdu occurs in a zero-shot setting. The CASE 2022 workshop accepts reports on systems developed for predicting test data of CASE 2021 as well. We observe that the best systems submitted by CASE 2022 participants achieve between 79.71 and 84.06 F1-macro for new languages in a zero-shot setting. The winning approaches are mainly ensembling models and merging data in multiple languages. The best two submissions on CASE 2021 data outperform submissions from last year for Subtask 1 and Subtask 2 in all languages. Only the following scenarios were not outperformed by new submissions on CASE 2021: Subtask 3 Portuguese & Subtask 4 English.
2021
ALEM at CASE 2021 Task 1: Multilingual Text Classification on News Articles
Alaeddin Gürel
|
Emre Emin
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)
We participated CASE shared task in ACL-IJCNLP 2021. This paper is a summary of our experiments and ideas about this shared task. For each subtask we shared our approach, successful and failed methods and our thoughts about them. We submit our results once for every subtask, except for subtask3, in task submission system and present scores based on our validation set formed from given training samples in this paper. Techniques and models we mentioned includes BERT, Multilingual BERT, oversampling, undersampling, data augmentation and their implications with each other. Most of the experiments we came up with were not completed, as time did not permit, but we share them here as we plan to do them as suggested in the future work part of document.
Search
Fix data
Co-authors
- Fatih Beyhan 1
- Yaoyao Dai 1
- Fırat Duruşan 1
- Emre Emin 1
- Hansi Hettiarachchi 1
- show all...
Venues
- case2