Aldo Porco
2020
Predicting Stance Change Using Modular Architectures
Aldo Porco
|
Dan Goldwasser
Proceedings of the 28th International Conference on Computational Linguistics
The ability to change a person’s mind on a given issue depends both on the arguments they are presented with and on their underlying perspectives and biases on that issue. Predicting stance changes require characterizing both aspects and the interaction between them, especially in realistic settings in which stance changes are very rare. In this paper, we suggest a modular learning approach, which decomposes the task into multiple modules, focusing on different aspects of the interaction between users, their beliefs, and the arguments they are exposed to. Our experiments show that our modular approach archives significantly better results compared to the end-to-end approach using BERT over the same inputs.
2018
Structured Representation Learning for Online Debate Stance Prediction
Chang Li
|
Aldo Porco
|
Dan Goldwasser
Proceedings of the 27th International Conference on Computational Linguistics
Online debates can help provide valuable information about various perspectives on a wide range of issues. However, understanding the stances expressed in these debates is a highly challenging task, which requires modeling both textual content and users’ conversational interactions. Current approaches take a collective classification approach, which ignores the relationships between different debate topics. In this work, we suggest to view this task as a representation learning problem, and embed the text and authors jointly based on their interactions. We evaluate our model over the Internet Argumentation Corpus, and compare different approaches for structural information embedding. Experimental results show that our model can achieve significantly better results compared to previous competitive models.