Alessandro Di Bari

Also published as: Alessandro Di Bari


2024

pdf bib
Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output
Hithesh Sankararaman | Mohammed Nasheed Yasin | Tanner Sorensen | Alessandro Di Bari | Andreas Stolcke
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

We present a light-weight approach for detecting nonfactual outputs from retrieval-augemented generation (RAG). Given a context and putative output, we compute a factuality score that can be thresholded to yield a binary decision to check the results of LLM-based question-answering, summarization, or other systems. Unlike factuality checkers that themselves rely on LLMs, we use compact, open-source natural language inference (NLI) models that yield a freely accessible solution with low latency and low cost at run-time, and no need for LLM fine-tuning. The approach also enables downstream mitigation and correction of hallucinations, by tracing them back to specific context chunks. Our experiments show high ROC-AUC across a wide range of relevant open source datasets, indicating the effectiveness of our method for fact-checking RAG output.

2014

pdf bib
Towards Model Driven Architectures for Human Language Technologies
Alessandro Di Bari | Guido Vetere | Kateryna Tymoshenko
Proceedings of the Workshop on Open Infrastructures and Analysis Frameworks for HLT