Alexander Tuzhilin


2019

pdf bib
Towards Controllable and Personalized Review Generation
Pan Li | Alexander Tuzhilin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this paper, we propose a novel model RevGAN that automatically generates controllable and personalized user reviews based on the arbitrarily given sentimental and stylistic information. RevGAN utilizes the combination of three novel components, including self-attentive recursive autoencoders, conditional discriminators, and personalized decoders. We test its performance on the several real-world datasets, where our model significantly outperforms state-of-the-art generation models in terms of sentence quality, coherence, personalization, and human evaluations. We also empirically show that the generated reviews could not be easily distinguished from the organically produced reviews and that they follow the same statistical linguistics laws.
Search
Co-authors
Venues