Alon Kipnis


2024

pdf bib
Information Parity: Measuring and Predicting the Multilingual Capabilities of Language Models
Alexander Tsvetkov | Alon Kipnis
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) are increasingly deployed in user-facing applications worldwide, necessitating handling multiple languages across various tasks. We propose a metric called Information Parity (IP) that can predict an LLM’s capabilities across multiple languages in a task-agnostic manner. IP is well-motivated from an information theoretic perspective: it is associated with the LLM’s efficiency of compressing the text in a given language compared to a reference language. We evaluate IP and other popular metrics such as Tokenization Parity (TP) and Tokenizer Fertility (TF) on several variants of open-sourced LLMs (Llama2, Gemma, Mistral). Among all metrics known to us, IP is better correlated with existing task-specific benchmark scores from the literature and thus better predicts such scores in a certain language. These findings show that IP may be useful for ranking multilingual LLMs’ capabilities regardless of the downstream task.