Anar Yeginbergen
2024
CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures
Ekaterina Sviridova
|
Anar Yeginbergen
|
Ainara Estarrona
|
Elena Cabrio
|
Serena Villata
|
Rodrigo Agerri
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Explaining Artificial Intelligence (AI) decisions is a major challenge nowadays in AI, in particular when applied to sensitive scenarios like medicine and law. However, the need to explain the rationale behind decisions is a main issues also for human-based deliberation as it is important to justify why a certain decision has been taken. Resident medical doctors for instance are required not only to provide a (possibly correct) diagnosis, but also to explain how they reached a certain conclusion. Developing new tools to aid residents to train their explanation skills is therefore a central objective of AI in education. In this paper, we follow this direction, and we present, to the best of our knowledge, the first multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are enriched with a natural language explanation written by doctors. These explanations have been manually annotated with argument components (i.e., premise, claim) and argument relations (i.e., attack, support). The Multilingual CasiMedicos-arg dataset consists of 558 clinical cases (English, Spanish, French, Italian) with explanations, where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations. We conclude by showing how competitive baselines perform over this challenging dataset for the argument mining task.
Argument Mining in Data Scarce Settings: Cross-lingual Transfer and Few-shot Techniques
Anar Yeginbergen
|
Maite Oronoz
|
Rodrigo Agerri
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent research on sequence labelling has been exploring different strategies to mitigate the lack of manually annotated data for the large majority of the world languages. Among others, the most successful approaches have been based on (i) the crosslingual transfer capabilities of multilingual pre-trained language models (model-transfer), (ii) data translation and label projection (data-transfer) and (iii), prompt-based learning by reusing the mask objective to exploit the few-shot capabilities of pre-trained language models (few-shot). Previous work seems to conclude that model-transfer outperform data-transfer methods and that few-shot techniques based on prompting are superior to updating the model’s weights via fine-tuning. In this paper we empirically demonstrate that, for Argument Mining, a sequence labelling task which requires the detection of long and complex discourse structures, previous insights on crosslingual transfer or few-shot learning do not apply. Contrary to previous work, we show that for Argument Mining data-transfer obtains better results than model-transfer and that fine-tuning outperforms few-shot methods. Regarding the former, the domain of the dataset used for data-transfer seems to be a deciding factor, while, for few-shot, the type of task (length and complexity of the sequence spans) and sampling method proves to be crucial.
Search
Co-authors
- Rodrigo Agerri 2
- Ekaterina Sviridova 1
- Ainara Estarrona 1
- Elena Cabrio 1
- Serena Villata 1
- show all...