Andréa Carneiro Linhares


2018

pdf bib
Predicting the Semantic Textual Similarity with Siamese CNN and LSTM
Elvys Linhares Pontes | Stéphane Huet | Andréa Carneiro Linhares | Juan-Manuel Torres-Moreno
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

Semantic Textual Similarity (STS) is the basis of many applications in Natural Language Processing (NLP). Our system combines convolution and recurrent neural networks to measure the semantic similarity of sentences. It uses a convolution network to take account of the local context of words and an LSTM to consider the global context of sentences. This combination of networks helps to preserve the relevant information of sentences and improves the calculation of the similarity between sentences. Our model has achieved good results and is competitive with the best state-of-the-art systems.

pdf bib
A New Annotated Portuguese/Spanish Corpus for the Multi-Sentence Compression Task
Elvys Linhares Pontes | Juan-Manuel Torres-Moreno | Stéphane Huet | Andréa Carneiro Linhares
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Multi-Sentence Compression with Word Vertex-Labeled Graphs and Integer Linear Programming
Elvys Linhares Pontes | Stéphane Huet | Thiago Gouveia da Silva | Andréa Carneiro Linhares | Juan-Manuel Torres-Moreno
Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)

Multi-Sentence Compression (MSC) aims to generate a short sentence with key information from a cluster of closely related sentences. MSC enables summarization and question-answering systems to generate outputs combining fully formed sentences from one or several documents. This paper describes a new Integer Linear Programming method for MSC using a vertex-labeled graph to select different keywords, and novel 3-gram scores to generate more informative sentences while maintaining their grammaticality. Our system is of good quality and outperforms the state-of-the-art for evaluations led on news dataset. We led both automatic and manual evaluations to determine the informativeness and the grammaticality of compressions for each dataset. Additional tests, which take advantage of the fact that the length of compressions can be modulated, still improve ROUGE scores with shorter output sentences.