Anh Duong Trinh
2020
Energy-based Neural Modelling for Large-Scale Multiple Domain Dialogue State Tracking
Anh Duong Trinh
|
Robert J. Ross
|
John D. Kelleher
Proceedings of the Fourth Workshop on Structured Prediction for NLP
Scaling up dialogue state tracking to multiple domains is challenging due to the growth in the number of variables being tracked. Furthermore, dialog state tracking models do not yet explicitly make use of relationships between dialogue variables, such as slots across domains. We propose using energy-based structure prediction methods for large-scale dialogue state tracking task in two multiple domain dialogue datasets. Our results indicate that: (i) modelling variable dependencies yields better results; and (ii) the structured prediction output aligns with the dialogue slot-value constraint principles. This leads to promising directions to improve state-of-the-art models by incorporating variable dependencies into their prediction process.
2019
Energy-Based Modelling for Dialogue State Tracking
Anh Duong Trinh
|
Robert Ross
|
John Kelleher
Proceedings of the First Workshop on NLP for Conversational AI
The uncertainties of language and the complexity of dialogue contexts make accurate dialogue state tracking one of the more challenging aspects of dialogue processing. To improve state tracking quality, we argue that relationships between different aspects of dialogue state must be taken into account as they can often guide a more accurate interpretation process. To this end, we present an energy-based approach to dialogue state tracking as a structured classification task. The novelty of our approach lies in the use of an energy network on top of a deep learning architecture to explore more signal correlations between network variables including input features and output labels. We demonstrate that the energy-based approach improves the performance of a deep learning dialogue state tracker towards state-of-the-art results without the need for many of the other steps required by current state-of-the-art methods.
Capturing Dialogue State Variable Dependencies with an Energy-based Neural Dialogue State Tracker
Anh Duong Trinh
|
Robert J. Ross
|
John D. Kelleher
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
Dialogue state tracking requires the population and maintenance of a multi-slot frame representation of the dialogue state. Frequently, dialogue state tracking systems assume independence between slot values within a frame. In this paper we argue that treating the prediction of each slot value as an independent prediction task may ignore important associations between the slot values, and, consequently, we argue that treating dialogue state tracking as a structured prediction problem can help to improve dialogue state tracking performance. To support this argument, the research presented in this paper is structured into three stages: (i) analyzing variable dependencies in dialogue data; (ii) applying an energy-based methodology to model dialogue state tracking as a structured prediction task; and (iii) evaluating the impact of inter-slot relationships on model performance. Overall we demonstrate that modelling the associations between target slots with an energy-based formalism improves dialogue state tracking performance in a number of ways.