User Satisfaction Modeling (USM) is one of the popular choices for task-oriented dialogue systems evaluation, where user satisfaction typically depends on whether the user’s task goals were fulfilled by the system. Task-oriented dialogue systems use task schema, which is a set of task attributes, to encode the user’s task goals. Existing studies on USM neglect explicitly modeling the user’s task goals fulfillment using the task schema. In this paper, we propose SG-USM, a novel schema-guided user satisfaction modeling framework. It explicitly models the degree to which the user’s preferences regarding the task attributes are fulfilled by the system for predicting the user’s satisfaction level. SG-USM employs a pre-trained language model for encoding dialogue context and task attributes. Further, it employs a fulfillment representation layer for learning how many task attributes have been fulfilled in the dialogue, an importance predictor component for calculating the importance of task attributes. Finally, it predicts the user satisfaction based on task attribute fulfillment and task attribute importance. Experimental results on benchmark datasets (i.e. MWOZ, SGD, ReDial, and JDDC) show that SG-USM consistently outperforms competitive existing methods. Our extensive analysis demonstrates that SG-USM can improve the interpretability of user satisfaction modeling, has good scalability as it can effectively deal with unseen tasks and can also effectively work in low-resource settings by leveraging unlabeled data. Code is available at https://github.com/amzn/user-satisfaction-modeling.
We present a complete pipeline to extract characters in a novel and link them to their direct-speech utterances. Our model is divided into three independent components: extracting direct-speech, compiling a list of characters, and attributing those characters to their utterances. Although we find that existing systems can perform the first two tasks accurately, attributing characters to direct speech is a challenging problem due to the narrator’s lack of explicit character mentions, and the frequent use of nominal and pronominal coreference when such explicit mentions are made. We adapt the progress made on Dialogue State Tracking to tackle a new problem: attributing speakers to dialogues. This is the first application of deep learning to speaker attribution, and it shows that is possible to overcome the need for the hand-crafted features and rules used in the past. Our full pipeline improves the performance of state-of-the-art models by a relative 50% in F1-score.
We introduce a deep learning model to learn the set of enumerated job skills associated with a job description. In our analysis of a large-scale government job portal mycareersfuture.sg, we observe that as much as 65% of job descriptions miss describing a significant number of relevant skills. Our model addresses this task from the perspective of an extreme multi-label classification (XMLC) problem, where descriptions are the evidence for the binary relevance of thousands of individual skills. Building upon the current state-of-the-art language modeling approaches such as BERT, we show our XMLC method improves on an existing baseline solution by over 9% and 7% absolute improvements in terms of recall and normalized discounted cumulative gain. We further show that our approach effectively addresses the missing skills problem, and helps in recovering relevant skills that were missed out in the job postings by taking into account the structured semantic representation of skills and their co-occurrences through a Correlation Aware Bootstrapping process. We further show that our approach, to ensure the BERT-XMLC model accounts for structured semantic representation of skills and their co-occurrences through a Correlation Aware Bootstrapping process, effectively addresses the missing skills problem, and helps in recovering relevant skills that were missed out in the job postings. To facilitate future research and replication of our work, we have made the dataset and the implementation of our model publicly available.
Graph Convolutional Networks (GCNs) are a class of spectral clustering techniques that leverage localized convolution filters to perform supervised classification directly on graphical structures. While such methods model nodes’ local pairwise importance, they lack the capability to model global importance relative to other nodes of the graph. This causes such models to miss critical information in tasks where global ranking is a key component for the task, such as in keyphrase extraction. We address this shortcoming by allowing the proper incorporation of global information into the GCN family of models through the use of scaled node weights. In the context of keyphrase extraction, incorporating global random walk scores obtained from TextRank boosts performance significantly. With our proposed method, we achieve state-of-the-art results, bettering a strong baseline by an absolute 2% increase in F1 score.
Datasets are integral artifacts of empirical scientific research. However, due to natural language variation, their recognition can be difficult and even when identified, can often be inconsistently referred across and within publications. We report our approach to the Coleridge Initiative’s Rich Context Competition, which tasks participants with identifying dataset surface forms (dataset mention extraction) and associating the extracted mention to its referred dataset (dataset classification). In this work, we propose various neural baselines and evaluate these model on one-plus and zero-shot classification scenarios. We further explore various joint learning approaches - exploring the synergy between the tasks - and report the issues with such techniques.
Identifying emergent research trends is a key issue for both primary researchers as well as secondary research managers. Such processes can uncover the historical development of an area, and yield insight on developing topics. We propose an embedded trend detection framework for this task which incorporates our bijunctive hypothesis that important phrases are written by important authors within a field and vice versa. By ranking both author and phrase information in a multigraph, our method jointly determines key phrases and authoritative authors. We represent this intermediate output as phrasal embeddings, and feed this to a recurrent neural network (RNN) to compute trend scores that identify research trends. Over two large datasets of scientific articles, we demonstrate that our approach successfully detects past trends from the field, outperforming baselines based solely on text centrality or citation.
We describe an end-to-end pipeline processing approach for SemEval 2017’s Task 10 to extract keyphrases and their relations from scientific publications. We jointly identify and classify keyphrases by modeling the subtasks as sequential labeling. Our system utilizes standard, surface-level features along with the adjacent word features, and performs conditional decoding on whole text to extract keyphrases. We focus only on the identification and typing of keyphrases (Subtasks A and B, together referred as extraction), but provide an end-to-end system inclusive of keyphrase relation identification (Subtask C) for completeness. Our top performing configuration achieves an F1 of 0.27 for the end-to-end keyphrase extraction and relation identification scenario on the final test data, and compares on par to other top ranked systems for keyphrase extraction. Our system outperforms other techniques that do not employ global decoding and hence do not account for dependencies between keyphrases. We believe this is crucial for keyphrase classification in the given context of scientific document mining.