Anke Stoll


2024

pdf bib
A Few Hypocrites: Few-Shot Learning and Subtype Definitions for Detecting Hypocrisy Accusations in Online Climate Change Debates
Paulina Garcia Corral | Avishai Green | Hendrik Meyer | Anke Stoll | Xiaoyue Yan | Myrthe Reuver
Proceedings of the 4th Workshop on Computational Linguistics for the Political and Social Sciences: Long and short papers

The climate crisis is a salient issue in online discussions, and hypocrisy accusations are a central rhetorical element in these debates. However, for large-scale text analysis, hypocrisy accusation detection is an understudied tool, most often defined as a smaller subtask of fallacious argument detection. In this paper, we define hypocrisy accusation detection as an independent task in NLP, and identify different relevant subtypes of hypocrisy accusations. Our Climate Hypocrisy Accusation Corpus (CHAC) consists of 420 Reddit climate debate comments, expert-annotated into two different types of hypocrisy accusations: personal versus political hypocrisy. We evaluate few-shot in-context learning with 6 shots and 3 instruction-tuned Large Language Models (LLMs) for detecting hypocrisy accusations in this dataset. Results indicate that the GPT-4o and Llama-3 models in particular show promise in detecting hypocrisy accusations (F1 reaching 0.68, while previous work shows F1 of 0.44). However, context matters for a complex semantic concept such as hypocrisy accusations, and we find models struggle especially at identifying political hypocrisy accusations compared to personal moral hypocrisy. Our study contributes new insights in hypocrisy detection and climate change discourse, and is a stepping stone for large-scale analysis of hypocrisy accusation in online climate debates.

pdf bib
AQuA – Combining Experts’ and Non-Experts’ Views To Assess Deliberation Quality in Online Discussions Using LLMs
Maike Behrendt | Stefan Sylvius Wagner | Marc Ziegele | Lena Wilms | Anke Stoll | Dominique Heinbach | Stefan Harmeling
Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024

Measuring the quality of contributions in political online discussions is crucial in deliberation research and computer science. Research has identified various indicators to assess online discussion quality, and with deep learning advancements, automating these measures has become feasible. While some studies focus on analyzing specific quality indicators, a comprehensive quality score incorporating various deliberative aspects is often preferred. In this work, we introduce AQuA, an additive score that calculates a unified deliberative quality score from multiple indices for each discussion post. Unlike other singular scores, AQuA preserves information on the deliberative aspects present in comments, enhancing model transparency. We develop adapter models for 20 deliberative indices, and calculate correlation coefficients between experts’ annotations and the perceived deliberativeness by non-experts to weigh the individual indices into a single deliberative score. We demonstrate that the AQuA score can be computed easily from pre-trained adapters and aligns well with annotations on other datasets that have not be seen during training. The analysis of experts’ vs. non-experts’ annotations confirms theoretical findings in the social science literature.

2021

pdf bib
Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments
Julian Risch | Anke Stoll | Lena Wilms | Michael Wiegand
Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments

pdf bib
Overview of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments
Julian Risch | Anke Stoll | Lena Wilms | Michael Wiegand
Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments

We present the GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments. This shared task comprises three binary classification subtasks with the goal to identify: toxic comments, engaging comments, and comments that include indications of a need for fact-checking, here referred to as fact-claiming comments. Building on the two previous GermEval shared tasks on the identification of offensive language in 2018 and 2019, we extend this year’s task definition to meet the demand of moderators and community managers to also highlight comments that foster respectful communication, encourage in-depth discussions, and check facts that lines of arguments rely on. The dataset comprises 4,188 posts extracted from the Facebook page of a German political talk show of a national public television broadcaster. A theoretical framework and additional reliability tests during the data annotation process ensure particularly high data quality. The shared task had 15 participating teams submitting 31 runs for the subtask on toxic comments, 25 runs for the subtask on engaging comments, and 31 for the subtask on fact-claiming comments. The shared task website can be found at https://germeval2021toxic.github.io/SharedTask/.

2019

pdf bib
HHU at SemEval-2019 Task 6: Context Does Matter - Tackling Offensive Language Identification and Categorization with ELMo
Alexander Oberstrass | Julia Romberg | Anke Stoll | Stefan Conrad
Proceedings of the 13th International Workshop on Semantic Evaluation

We present our results for OffensEval: Identifying and Categorizing Offensive Language in Social Media (SemEval 2019 - Task 6). Our results show that context embeddings are important features for the three different sub-tasks in connection with classical machine and with deep learning. Our best model reached place 3 of 75 in sub-task B with a macro F1 of 0.719. Our approaches for sub-task A and C perform less well but could also deliver promising results.