Ankur Kejriwal


2024

pdf bib
JHU IWSLT 2024 Dialectal and Low-resource System Description
Nathaniel Romney Robinson | Kaiser Sun | Cihan Xiao | Niyati Bafna | Weiting Tan | Haoran Xu | Henry Li Xinyuan | Ankur Kejriwal | Sanjeev Khudanpur | Kenton Murray | Paul McNamee
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

Johns Hopkins University (JHU) submitted systems for all eight language pairs in the 2024 Low-Resource Language Track. The main effort of this work revolves around fine-tuning large and publicly available models in three proposed systems: i) end-to-end speech translation (ST) fine-tuning of Seamless4MT v2; ii) ST fine-tuning of Whisper; iii) a cascaded system involving automatic speech recognition with fine-tuned Whisper and machine translation with NLLB. On top of systems above, we conduct a comparative analysis on different training paradigms, such as intra-distillation for NLLB as well as joint training and curriculum learning for SeamlessM4T v2. Our results show that the best-performing approach differs by language pairs, but that i) fine-tuned SeamlessM4T v2 tends to perform best for source languages on which it was pre-trained, ii) multi-task training helps Whisper fine-tuning, iii) cascaded systems with Whisper and NLLB tend to outperform Whisper alone, and iv) intra-distillation helps NLLB fine-tuning.

2020

pdf bib
An exploratory approach to the Parallel Corpus Filtering shared task WMT20
Ankur Kejriwal | Philipp Koehn
Proceedings of the Fifth Conference on Machine Translation

In this document we describe our submission to the parallel corpus filtering task using multilingual word embedding, language models and an ensemble of pre and post filtering rules. We use the norms of embedding and the perplexities of language models along with pre/post filtering rules to complement the LASER baseline scores and in the end get an improvement on the dev set in both language pairs.