Arup Baruah


2020

pdf bib
Context-Aware Sarcasm Detection Using BERT
Arup Baruah | Kaushik Das | Ferdous Barbhuiya | Kuntal Dey
Proceedings of the Second Workshop on Figurative Language Processing

In this paper, we present the results obtained by BERT, BiLSTM and SVM classifiers on the shared task on Sarcasm Detection held as part of The Second Workshop on Figurative Language Processing. The shared task required the use of conversational context to detect sarcasm. We experimented by varying the amount of context used along with the response (response is the text to be classified). The amount of context used includes (i) zero context, (ii) last one, two or three utterances, and (iii) all utterances. It was found that including the last utterance in the dialogue along with the response improved the performance of the classifier for the Twitter data set. On the other hand, the best performance for the Reddit data set was obtained when using only the response without any contextual information. The BERT classifier obtained F-score of 0.743 and 0.658 for the Twitter and Reddit data set respectively.

pdf bib
IIITG-ADBU at SemEval-2020 Task 8: A Multimodal Approach to Detect Offensive, Sarcastic and Humorous Memes
Arup Baruah | Kaushik Das | Ferdous Barbhuiya | Kuntal Dey
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In this paper, we present a multimodal architecture to determine the emotion expressed in a meme. This architecture utilizes both textual and visual information present in a meme. To extract image features we experimented with pre-trained VGG-16 and Inception-V3 classifiers and to extract text features we used LSTM and BERT classifiers. Both FastText and GloVe embeddings were experimented with for the LSTM classifier. The best F1 scores our classifier obtained on the official analysis results are 0.3309, 0.4752, and 0.2897 for Task A, B, and C respectively in the Memotion Analysis task (Task 8) organized as part of International Workshop on Semantic Evaluation 2020 (SemEval 2020). In our study, we found that combining both textual and visual information expressed in a meme improves the performance of the classifier as opposed to using standalone classifiers that use only text or visual data.

pdf bib
IIITG-ADBU at SemEval-2020 Task 9: SVM for Sentiment Analysis of English-Hindi Code-Mixed Text
Arup Baruah | Kaushik Das | Ferdous Barbhuiya | Kuntal Dey
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In this paper, we present the results that the team IIITG-ADBU (codalab username ‘abaruah’) obtained in the SentiMix task (Task 9) of the International Workshop on Semantic Evaluation 2020 (SemEval 2020). This task required the detection of sentiment in code-mixed Hindi-English tweets. Broadly, we performed two sets of experiments for this task. The first experiment was performed using the multilingual BERT classifier and the second set of experiments was performed using SVM classifiers. The character-based SVM classifier obtained the best F1 score of 0.678 in the test set with a rank of 21 among 62 participants. The performance of the multilingual BERT classifier was quite comparable with the SVM classifier on the development set. However, on the test set it obtained an F1 score of 0.342.

pdf bib
KAFK at SemEval-2020 Task 8: Extracting Features from Pre-trained Neural Networks to Classify Internet Memes
Kaushik Amar Das | Arup Baruah | Ferdous Ahmed Barbhuiya | Kuntal Dey
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper presents two approaches for the internet meme classification challenge of SemEval-2020 Task 8 by Team KAFK (cosec). The first approach uses both text and image features, while the second approach uses only the images. Error analysis of the two approaches shows that using only the images is more robust to the noise in the text on the memes. We utilize pre-trained DistilBERT and EfficientNet to extract features from the text and image of the memes respectively. Our classification systems obtained macro f1 score of 0.3286 for Task A and 0.5005 for Task B.

pdf bib
IIITG-ADBU at SemEval-2020 Task 12: Comparison of BERT and BiLSTM in Detecting Offensive Language
Arup Baruah | Kaushik Das | Ferdous Barbhuiya | Kuntal Dey
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Task 12 of SemEval 2020 consisted of 3 subtasks, namely offensive language identification (Subtask A), categorization of offense type (Subtask B), and offense target identification (Subtask C). This paper presents the results our classifiers obtained for the English language in the 3 subtasks. The classifiers used by us were BERT and BiLSTM. On the test set, our BERT classifier obtained macro F1 score of 0.90707 for subtask A, and 0.65279 for subtask B. The BiLSTM classifier obtained macro F1 score of 0.57565 for subtask C. The paper also performs an analysis of the errors made by our classifiers. We conjecture that the presence of few misleading instances in the dataset is affecting the performance of the classifiers. Our analysis also discusses the need of temporal context and world knowledge to determine the offensiveness of few comments.

pdf bib
KAFK at SemEval-2020 Task 12: Checkpoint Ensemble of Transformers for Hate Speech Classification
Kaushik Amar Das | Arup Baruah | Ferdous Ahmed Barbhuiya | Kuntal Dey
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper presents the approach of Team KAFK for the English edition of SemEval-2020 Task 12. We use checkpoint ensembling to create ensembles of BERT-based transformers and show that it can improve the performance of classification systems. We explore attention mask dropout to mitigate for the poor constructs of social media texts. Our classifiers scored macro-f1 of 0.909, 0.551 and 0.616 for subtasks A, B and C respectively. The code is publicly released online.

pdf bib
Aggression Identification in English, Hindi and Bangla Text using BERT, RoBERTa and SVM
Arup Baruah | Kaushik Das | Ferdous Barbhuiya | Kuntal Dey
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying

This paper presents the results of the classifiers we developed for the shared tasks in aggression identification and misogynistic aggression identification. These two shared tasks were held as part of the second workshop on Trolling, Aggression and Cyberbullying (TRAC). Both the subtasks were held for English, Hindi and Bangla language. In our study, we used English BERT (En-BERT), RoBERTa, DistilRoBERTa, and SVM based classifiers for English language. For Hindi and Bangla language, multilingual BERT (M-BERT), XLM-RoBERTa and SVM classifiers were used. Our best performing models are EN-BERT for English Subtask A (Weighted F1 score of 0.73, Rank 5/16), SVM for English Subtask B (Weighted F1 score of 0.87, Rank 2/15), SVM for Hindi Subtask A (Weighted F1 score of 0.79, Rank 2/10), XLMRoBERTa for Hindi Subtask B (Weighted F1 score of 0.87, Rank 2/10), SVM for Bangla Subtask A (Weighted F1 score of 0.81, Rank 2/10), and SVM for Bangla Subtask B (Weighted F1 score of 0.93, Rank 4/8). It is seen that the superior performance of the SVM classifier was achieved mainly because of its better prediction of the majority class. BERT based classifiers were found to predict the minority classes better.

2019

pdf bib
ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detection
Arup Baruah | Ferdous Barbhuiya | Kuntal Dey
Proceedings of the 13th International Workshop on Semantic Evaluation

In this paper, we present the results obtained using bi-directional long short-term memory (BiLSTM) with and without attention and Logistic Regression (LR) models for SemEval-2019 Task 5 titled ”HatEval: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter”. This paper presents the results obtained for Subtask A for English language. The results of the BiLSTM and LR models are compared for two different types of preprocessing. One with no stemming performed and no stopwords removed. The other with stemming performed and stopwords removed. The BiLSTM model without attention performed the best for the first test, while the LR model with character n-grams performed the best for the second test. The BiLSTM model obtained an F1 score of 0.51 on the test set and obtained an official ranking of 8/71.