Arvind Srikantan
2020
ColloQL: Robust Text-to-SQL Over Search Queries
Karthik Radhakrishnan
|
Arvind Srikantan
|
Xi Victoria Lin
Proceedings of the First Workshop on Interactive and Executable Semantic Parsing
Translating natural language utterances to executable queries is a helpful technique in making the vast amount of data stored in relational databases accessible to a wider range of non-tech-savvy end users. Prior work in this area has largely focused on textual input that is linguistically correct and semantically unambiguous. However, real-world user queries are often succinct, colloquial, and noisy, resembling the input of a search engine. In this work, we introduce data augmentation techniques and a sampling-based content-aware BERT model (ColloQL) to achieve robust text-to-SQL modeling over natural language search (NLS) questions. Due to the lack of evaluation data, we curate a new dataset of NLS questions and demonstrate the efficacy of our approach. ColloQL’s superior performance extends to well-formed text, achieving an 84.9% (logical) and 90.7% (execution) accuracy on the WikiSQL dataset, making it, to the best of our knowledge, the highest performing model that does not use execution guided decoding.