Ashwani Tanwar
2021
Self-Supervised Detection of Contextual Synonyms in a Multi-Class Setting: Phenotype Annotation Use Case
Jingqing Zhang
|
Luis Bolanos Trujillo
|
Tong Li
|
Ashwani Tanwar
|
Guilherme Freire
|
Xian Yang
|
Julia Ive
|
Vibhor Gupta
|
Yike Guo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Contextualised word embeddings is a powerful tool to detect contextual synonyms. However, most of the current state-of-the-art (SOTA) deep learning concept extraction methods remain supervised and underexploit the potential of the context. In this paper, we propose a self-supervised pre-training approach which is able to detect contextual synonyms of concepts being training on the data created by shallow matching. We apply our methodology in the sparse multi-class setting (over 15,000 concepts) to extract phenotype information from electronic health records. We further investigate data augmentation techniques to address the problem of the class sparsity. Our approach achieves a new SOTA for the unsupervised phenotype concept annotation on clinical text on F1 and Recall outperforming the previous SOTA with a gain of up to 4.5 and 4.0 absolute points, respectively. After fine-tuning with as little as 20% of the labelled data, we also outperform BioBERT and ClinicalBERT. The extrinsic evaluation on three ICU benchmarks also shows the benefit of using the phenotypes annotated by our model as features.
Search
Co-authors
- Jingqing Zhang 1
- Luis Bolanos Trujillo 1
- Tong Li 1
- Guilherme Freire 1
- Xian Yang 1
- show all...