Ayimunishagu Abulimiti


2020

pdf bib
Automatic Speech Recognition for Uyghur through Multilingual Acoustic Modeling
Ayimunishagu Abulimiti | Tanja Schultz
Proceedings of the Twelfth Language Resources and Evaluation Conference

Low-resource languages suffer from lower performance of Automatic Speech Recognition (ASR) system due to the lack of data. As a common approach, multilingual training has been applied to achieve more context coverage and has shown better performance over the monolingual training (Heigold et al., 2013). However, the difference between the donor language and the target language may distort the acoustic model trained with multilingual data, especially when much larger amount of data from donor languages is used for training the models of low-resource language. This paper presents our effort towards improving the performance of ASR system for the under-resourced Uyghur language with multilingual acoustic training. For the developing of multilingual speech recognition system for Uyghur, we used Turkish as donor language, which we selected from GlobalPhone corpus as the most similar language to Uyghur. By generating subsets of Uyghur training data, we explored the performance of multilingual speech recognition systems trained with different sizes of Uyghur and Turkish data. The best speech recognition system for Uyghur is achieved by multilingual training using all Uyghur data (10hours) and 17 hours of Turkish data and the WER is 19.17%, which corresponds to 4.95% relative improvement over monolingual training.

pdf bib
Building Language Models for Morphological Rich Low-Resource Languages using Data from Related Donor Languages: the Case of Uyghur
Ayimunishagu Abulimiti | Tanja Schultz
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

Huge amounts of data are needed to build reliable statistical language models. Automatic speech processing tasks in low-resource languages typically suffer from lower performances due to weak or unreliable language models. Furthermore, language modeling for agglutinative languages is very challenging, as the morphological richness results in higher Out Of Vocabulary (OOV) rate. In this work, we show our effort to build word-based as well as morpheme-based language models for Uyghur, a language that combines both challenges, i.e. it is a low-resource and agglutinative language. Fortunately, there exists a closely-related rich-resource language, namely Turkish. Here, we present our work on leveraging Turkish text data to improve Uyghur language models. To maximize the overlap between Uyghur and Turkish words, the Turkish data is pre-processed on the word surface level, which results in 7.76% OOV-rate reduction on the Uyghur development set. To investigate various levels of low-resource conditions, different subsets of Uyghur data are generated. Morpheme-based language models trained with bilingual data achieved up to 40.91% relative perplexity reduction over the language models trained only with Uyghur data.
Search
Co-authors
Venues