In table-text open-domain question answering, a retriever system retrieves relevant evidence from tables and text to answer questions. Previous studies in table-text open-domain question answering have two common challenges: firstly, their retrievers can be affected by false-positive labels in training datasets; secondly, they may struggle to provide appropriate evidence for questions that require reasoning across the table. To address these issues, we propose Denoised Table-Text Retriever (DoTTeR). Our approach involves utilizing a denoised training dataset with fewer false positive labels by discarding instances with lower question-relevance scores measured through a false positive detection model. Subsequently, we integrate table-level ranking information into the retriever to assist in finding evidence for questions that demand reasoning across the table. To encode this ranking information, we fine-tune a rank-aware column encoder to identify minimum and maximum values within a column. Experimental results demonstrate that DoTTeR significantly outperforms strong baselines on both retrieval recall and downstream QA tasks. Our code is available at https://github.com/deokhk/DoTTeR.
Automatic postediting (APE) is an automated process to refine a given machine translation (MT). Recent findings present that existing APE systems are not good at handling high-quality MTs even for a language pair with abundant data resources, English–German: the better the given MT is, the harder it is to decide what parts to edit and how to fix these errors. One possible solution to this problem is to instill deeper knowledge about the target language into the model. Thus, we propose a linguistically motivated method of regularization that is expected to enhance APE models’ understanding of the target language: a loss function that encourages symmetric self-attention on the given MT. Our analysis of experimental results demonstrates that the proposed method helps improving the state-of-the-art architecture’s APE quality for high-quality MTs.
Screenplay summarization is the task of extracting informative scenes from a screenplay. The screenplay contains turning point (TP) events that change the story direction and thus define the story structure decisively. Accordingly, this task can be defined as the TP identification task. We suggest using dialogue information, one attribute of screenplays, motivated by previous work that discovered that TPs have a relation with dialogues appearing in screenplays. To teach a model this characteristic, we add a dialogue feature to the input embedding. Moreover, in an attempt to improve the model architecture of previous studies, we replace LSTM with Transformer. We observed that the model can better identify TPs in a screenplay by using dialogue information and that a model adopting Transformer outperforms LSTM-based models.
Automatic Post-Editing (APE) aims to correct errors in the output of a given machine translation (MT) system. Although data-driven approaches have become prevalent also in the APE task as in many other NLP tasks, there has been a lack of qualified training data due to the high cost of manual construction. eSCAPE, a synthetic APE corpus, has been widely used to alleviate the data scarcity, but it might not address genuine APE corpora’s characteristic that the post-edited sentence should be a minimally edited revision of the given MT output. Therefore, we propose two new methods of synthesizing additional MT outputs by adapting back-translation to the APE task, obtaining robust enlargements of the existing synthetic APE training dataset. Experimental results on the WMT English-German APE benchmarks demonstrate that our enlarged datasets are effective in improving APE performance.
This paper describes POSTECH’s quality estimation systems submitted to Task 2 of the WMT 2021 quality estimation shared task: Word and Sentence-Level Post-editing Effort. We notice that it is possible to improve the stability of the latest quality estimation models that have only one encoder based on the self-attention mechanism to simultaneously process both of the two input data, a source sequence and its machine translation, in that such models have neglected to take advantage of pre-trained monolingual representations, which are generally accepted as reliable representations for various natural language processing tasks. Therefore, our model uses two pre-trained monolingual encoders and then exchanges the information of two encoded representations through two additional cross attention networks. According to the official leaderboard, our systems outperform the baseline systems in terms of the Matthews correlation coefficient for machine translations’ word-level quality estimation and in terms of the Pearson’s correlation coefficient for sentence-level quality estimation by 0.4126 and 0.5497 respectively.
This paper describes POSTECH-ETRI’s submission to WMT2020 for the shared task on automatic post-editing (APE) for 2 language pairs: English-German (En-De) and English-Chinese (En-Zh). We propose APE systems based on a cross-lingual language model, which jointly adopts translation language modeling (TLM) and masked language modeling (MLM) training objectives in the pre-training stage; the APE models then utilize jointly learned language representations between the source language and the target language. In addition, we created 19 million new sythetic triplets as additional training data for our final ensemble model. According to experimental results on the WMT2020 APE development data set, our models showed an improvement over the baseline by TER of -3.58 and a BLEU score of +5.3 for the En-De subtask; and TER of -5.29 and a BLEU score of +7.32 for the En-Zh subtask.
This paper describes POSTECH’s submission to WMT20 for the shared task on Automatic Post-Editing (APE). Our focus is on increasing the quantity of available APE data to overcome the shortage of human-crafted training data. In our experiment, we implemented a noising module that simulates four types of post-editing errors, and we introduced this module into a Transformer-based multi-source APE model. Our noising module implants errors into texts on the target side of parallel corpora during the training phase to make synthetic MT outputs, increasing the entire number of training samples. We also generated additional training data using the parallel corpora and NMT model that were released for the Quality Estimation task, and we used these data to train our APE model. Experimental results on the WMT20 English-German APE data set show improvements over the baseline in terms of both the TER and BLEU scores: our primary submission achieved an improvement of -3.15 TER and +4.01 BLEU, and our contrastive submission achieved an improvement of -3.34 TER and +4.30 BLEU.