Bharath Chintagunta


2024

pdf bib
A Continued Pretrained LLM Approach for Automatic Medical Note Generation
Dong Yuan | Eti Rastogi | Gautam Naik | Sree Prasanna Rajagopal | Sagar Goyal | Fen Zhao | Bharath Chintagunta | Jeffrey Ward
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

LLMs are revolutionizing NLP tasks. However, the use of the most advanced LLMs, such as GPT-4, is often prohibitively expensive for most specialized fields. We introduce HEAL, the first continuously trained 13B LLaMA2-based LLM that is purpose-built for medical conversations and measured on automated scribing. Our results demonstrate that HEAL outperforms GPT-4 and PMC-LLaMA in PubMedQA, with an accuracy of 78.4%. It also achieves parity with GPT-4 in generating medical notes. Remarkably, HEAL surpasses GPT-4 and Med-PaLM 2 in identifying more correct medical concepts and exceeds the performance of human scribes and other comparable models in correctness and completeness.

2021

pdf bib
Medically Aware GPT-3 as a Data Generator for Medical Dialogue Summarization
Bharath Chintagunta | Namit Katariya | Xavier Amatriain | Anitha Kannan
Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations

In medical dialogue summarization, summaries must be coherent and must capture all the medically relevant information in the dialogue. However, learning effective models for summarization require large amounts of labeled data which is especially hard to obtain. We present an algorithm to create synthetic training data with an explicit focus on capturing medically relevant information. We utilize GPT-3 as the backbone of our algorithm and scale 210 human labeled examples to yield results comparable to using 6400 human labeled examples (~30x) leveraging low-shot learning and an ensemble method. In detailed experiments, we show that this approach produces high quality training data that can further be combined with human labeled data to get summaries that are strongly preferable to those produced by models trained on human data alone both in terms of medical accuracy and coherency.

2019

pdf bib
Build it Break it Fix it for Dialogue Safety: Robustness from Adversarial Human Attack
Emily Dinan | Samuel Humeau | Bharath Chintagunta | Jason Weston
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The detection of offensive language in the context of a dialogue has become an increasingly important application of natural language processing. The detection of trolls in public forums (Galán-García et al., 2016), and the deployment of chatbots in the public domain (Wolf et al., 2017) are two examples that show the necessity of guarding against adversarially offensive behavior on the part of humans. In this work, we develop a training scheme for a model to become robust to such human attacks by an iterative build it, break it, fix it scheme with humans and models in the loop. In detailed experiments we show this approach is considerably more robust than previous systems. Further, we show that offensive language used within a conversation critically depends on the dialogue context, and cannot be viewed as a single sentence offensive detection task as in most previous work. Our newly collected tasks and methods are all made open source and publicly available.