Bo-Han Lu


2024

pdf bib
Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems
Bo-Han Lu | Yi-Hsuan Lin | Annie Lee | Richard Tzong-Han Tsai
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Machine translation focuses mainly on high-resource languages (HRLs), while low-resource languages (LRLs) like Taiwanese Hokkien are relatively under-explored. The study aims to address this gap by developing a dual translation model between Taiwanese Hokkien and both Traditional Mandarin Chinese and English. We employ a pre-trained LLaMA 2-7B model specialized in Traditional Mandarin Chinese to leverage the orthographic similarities between Taiwanese Hokkien Han and Traditional Mandarin Chinese. Our comprehensive experiments involve translation tasks across various writing systems of Taiwanese Hokkien as well as between Taiwanese Hokkien and other HRLs. We find that the use of a limited monolingual corpus still further improves the model’s Taiwanese Hokkien capabilities. We then utilize our translation model to standardize all Taiwanese Hokkien writing systems into Hokkien Han, resulting in further performance improvements. Additionally, we introduce an evaluation method incorporating back-translation and GPT-4 to ensure reliable translation quality assessment even for LRLs. The study contributes to narrowing the resource gap for Taiwanese Hokkien and empirically investigates the advantages and limitations of pre-training and fine-tuning based on LLaMA 2.

2022

pdf bib
Exploring Methods for Building Dialects-Mandarin Code-Mixing Corpora: A Case Study in Taiwanese Hokkien
Sin-En Lu | Bo-Han Lu | Chao-Yi Lu | Richard Tzong-Han Tsai
Findings of the Association for Computational Linguistics: EMNLP 2022

In natural language processing (NLP), code-mixing (CM) is a challenging task, especially when the mixed languages include dialects. In Southeast Asian countries such as Singapore, Indonesia, and Malaysia, Hokkien-Mandarin is the most widespread code-mixed language pair among Chinese immigrants, and it is also common in Taiwan. However, dialects such as Hokkien often have a scarcity of resources and the lack of an official writing system, limiting the development of dialect CM research. In this paper, we propose a method to construct a Hokkien-Mandarin CM dataset to mitigate the limitation, overcome the morphological issue under the Sino-Tibetan language family, and offer an efficient Hokkien word segmentation method through a linguistics-based toolkit. Furthermore, we use our proposed dataset and employ transfer learning to train the XLM (cross-lingual language model) for translation tasks. To fit the code-mixing scenario, we adapt XLM slightly. We found that by using linguistic knowledge, rules, and language tags, the model produces good results on CM data translation while maintaining monolingual translation quality.

pdf bib
BRCC and SentiBahasaRojak: The First Bahasa Rojak Corpus for Pretraining and Sentiment Analysis Dataset
Nanda Putri Romadhona | Sin-En Lu | Bo-Han Lu | Richard Tzong-Han Tsai
Proceedings of the 29th International Conference on Computational Linguistics

Code-mixing refers to the mixed use of multiple languages. It is prevalent in multilingual societies and is also one of the most challenging natural language processing tasks. In this paper, we study Bahasa Rojak, a dialect popular in Malaysia that consists of English, Malay, and Chinese. Aiming to establish a model to deal with the code-mixing phenomena of Bahasa Rojak, we use data augmentation to automatically construct the first Bahasa Rojak corpus for pre-training language models, which we name the Bahasa Rojak Crawled Corpus (BRCC). We also develop a new pre-trained model called “Mixed XLM”. The model can tag the language of the input token automatically to process code-mixing input. Finally, to test the effectiveness of the Mixed XLM model pre-trained on BRCC for social media scenarios where code-mixing is found frequently, we compile a new Bahasa Rojak sentiment analysis dataset, SentiBahasaRojak, with a Kappa value of 0.77.